Wang Weiwei, Wen Zhiqiang, Hu Zhanmei, Chen Jian, Gu Yanhui, Peng Qizhao
College of Design and Art, Shaanxi University of Science and Technology, Xian, 710021, China.
Shaanxi University of International Trade & Commerce, Xian, 710021, China.
Sci Rep. 2025 May 5;15(1):15712. doi: 10.1038/s41598-025-00633-y.
The development of scientifically rigorous evaluation methods is essential to overcome three persistent challenges in public navigation interfaces: inadequate guidance, low usability, and suboptimal user experience. Focusing on intelligent medical guidance systems, this study establishes a dual-dimensional analytical framework encompassing layout aesthetics (spatial composition principles) and visual cognition (information processing patterns). We propose an enhanced grey H-convex correlation model integrating Bayesian Best Worst Method (BBWM) and modified CRITIC with reference point (M-CRITIC-RP) to address weight determination limitations in existing models. Our experimental analysis reveals two key findings: First, the synergistic integration of layout aesthetics (e.g., visual hierarchy balance) and visual cognition characteristics (e.g., attention distribution patterns) significantly improves interface usability for medical service navigation. Second, the proposed BBWM-M-CRITIC-RP hybrid model demonstrates superior performance in quantifying aesthetic-cognition relationships, achieving 88% prediction accuracy compared to conventional methods. In a word, our research provides a new theoretical method for traditional visual display design and a new evaluation criterion for interface design, aiming at improving the user experience.
指导不足、可用性低和用户体验欠佳。本研究聚焦于智能医疗指导系统,建立了一个包含布局美学(空间构图原则)和视觉认知(信息处理模式)的二维分析框架。我们提出了一种增强型灰色H凸相关模型,该模型整合了贝叶斯最佳最差方法(BBWM)和带参考点的改进CRITIC方法(M-CRITIC-RP),以解决现有模型中权重确定的局限性。我们的实验分析揭示了两个关键发现:第一,布局美学(如视觉层次平衡)和视觉认知特征(如注意力分布模式)的协同整合显著提高了医疗服务导航界面的可用性。第二,所提出的BBWM-M-CRITIC-RP混合模型在量化美学与认知关系方面表现卓越,与传统方法相比,预测准确率达到了88%。总之,我们的研究为传统视觉显示设计提供了一种新的理论方法,为界面设计提供了一种新的评估标准,旨在改善用户体验。