Suppr超能文献

新型动态人体血脑屏障芯片模型中周细胞辅助的血管腔组织构建

Pericyte-Assisted Vascular Lumen Organization in a Novel Dynamic Human Blood-Brain Barrier-on-Chip Model.

作者信息

Guarino Vita, Perrone Elisabetta, De Luca Elisa, Rainer Alberto, Cesaria Maura, Zizzari Alessandra, Bianco Monica, Gigli Giuseppe, Moroni Lorenzo, Arima Valentina

机构信息

Department of Experimental Medicine, University of Salento, Lecce, 73100, Italy.

NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy.

出版信息

Adv Healthc Mater. 2025 Jun;14(15):e2401804. doi: 10.1002/adhm.202401804. Epub 2025 May 6.

Abstract

Organ-on-Chip (OoC) technology provides a powerful platform for neurovascular research, enabling the precise replication of the blood-brain barrier (BBB) microenvironment, including its 3D architecture and the influence of dynamic blood flow. This study introduces a novel microfluidic device designed to investigate the morphological and structural adaptations of human brain endothelial cells (ECs) within narrow, square-shaped microchannels that closely mimic the microvessels of the brain's microcirculation. The endothelial microchannels are layered above a microchamber filled with Matrigel and abluminal vascular cells, enhancing cell-cell interactions across the BBB interface. The system integrates co-culture with pericytes and astrocytes while subjecting brain ECs to physiologically relevant pulsatile flow. The findings reveal that the morphology and cytoskeletal organization of brain ECs are distinctly influenced by pulsatile flow depending on the presence of pericytes and astrocytes. Specifically, in the absence of perivascular support, brain ECs exhibit a stretched morphology with prominent actin stress fibers, while co-culture with pericytes and astrocytes promotes endothelial rearrangement, leading to lumen formation and enhanced barrier properties. This study highlights the essential role of perivascular cells in modulating endothelial responses under microvascular confinement and physiologically relevant flow. These insights advance in vitro models of the neurovascular unit and BBB mechanobiology.

摘要

芯片器官(OoC)技术为神经血管研究提供了一个强大的平台,能够精确复制血脑屏障(BBB)的微环境,包括其三维结构以及动态血流的影响。本研究介绍了一种新型微流控装置,旨在研究人脑血管内皮细胞(ECs)在狭窄的方形微通道内的形态和结构适应性,这些微通道紧密模拟了脑微循环的微血管。内皮微通道位于充满基质胶和无腔血管细胞的微腔上方,增强了跨血脑屏障界面的细胞间相互作用。该系统将与周细胞和星形胶质细胞的共培养整合在一起,同时使脑内皮细胞受到生理相关的脉动流作用。研究结果表明,根据周细胞和星形胶质细胞的存在情况,脉动流对脑内皮细胞的形态和细胞骨架组织有明显影响。具体而言,在缺乏血管周围支持的情况下,脑内皮细胞呈现出拉长的形态,伴有明显的肌动蛋白应力纤维,而与周细胞和星形胶质细胞共培养则促进内皮细胞重排,导致管腔形成并增强屏障特性。本研究强调了血管周围细胞在微血管限制和生理相关血流条件下调节内皮反应中的重要作用。这些见解推动了神经血管单元和血脑屏障力学生物学的体外模型发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8d9/12147984/498d6ea9173e/ADHM-14-0-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验