Suppr超能文献

基于深度学习的无标记跟踪技术在帕金森病脑深部刺激植入术中上肢运动学活动的自动提取:概念验证研究。

Automatic extraction of upper-limb kinematic activity using deep learning-based markerless tracking during deep brain stimulation implantation for Parkinson's disease: A proof of concept study.

机构信息

Department of Human Biology and Kinesiology, Colorado College, Colorado Springs, Colorado, United States of America.

Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America.

出版信息

PLoS One. 2022 Oct 20;17(10):e0275490. doi: 10.1371/journal.pone.0275490. eCollection 2022.

Abstract

Optimal placement of deep brain stimulation (DBS) therapy for treating movement disorders routinely relies on intraoperative motor testing for target determination. However, in current practice, motor testing relies on subjective interpretation and correlation of motor and neural information. Recent advances in computer vision could improve assessment accuracy. We describe our application of deep learning-based computer vision to conduct markerless tracking for measuring motor behaviors of patients undergoing DBS surgery for the treatment of Parkinson's disease. Video recordings were acquired during intraoperative kinematic testing (N = 5 patients), as part of standard of care for accurate implantation of the DBS electrode. Kinematic data were extracted from videos post-hoc using the Python-based computer vision suite DeepLabCut. Both manual and automated (80.00% accuracy) approaches were used to extract kinematic episodes from threshold derived kinematic fluctuations. Active motor epochs were compressed by modeling upper limb deflections with a parabolic fit. A semi-supervised classification model, support vector machine (SVM), trained on the parameters defined by the parabolic fit reliably predicted movement type. Across all cases, tracking was well calibrated (i.e., reprojection pixel errors 0.016-0.041; accuracies >95%). SVM predicted classification demonstrated high accuracy (85.70%) including for two common upper limb movements, arm chain pulls (92.30%) and hand clenches (76.20%), with accuracy validated using a leave-one-out process for each patient. These results demonstrate successful capture and categorization of motor behaviors critical for assessing the optimal brain target for DBS surgery. Conventional motor testing procedures have proven informative and contributory to targeting but have largely remained subjective and inaccessible to non-Western and rural DBS centers with limited resources. This approach could automate the process and improve accuracy for neuro-motor mapping, to improve surgical targeting, optimize DBS therapy, provide accessible avenues for neuro-motor mapping and DBS implantation, and advance our understanding of the function of different brain areas.

摘要

深部脑刺激 (DBS) 疗法治疗运动障碍的最佳位置通常依赖于术中运动测试来确定目标。然而,在目前的实践中,运动测试依赖于主观解释和运动与神经信息的相关性。计算机视觉的最新进展可以提高评估的准确性。我们描述了我们应用基于深度学习的计算机视觉来进行无标记跟踪,以测量接受 DBS 手术治疗帕金森病的患者的运动行为。视频记录是在术中运动测试期间获得的(N=5 名患者),作为 DBS 电极精确植入的标准护理的一部分。运动学数据是使用基于 Python 的计算机视觉套件 DeepLabCut 从视频中提取的。手动和自动(80.00%的准确率)方法都被用来从阈值衍生的运动波动中提取运动学片段。通过用抛物线拟合来模拟上肢偏转而压缩主动运动时段。基于抛物拟合定义的参数训练半监督分类模型(支持向量机 (SVM)),可靠地预测运动类型。在所有情况下,跟踪都经过良好校准(即,重投影像素误差 0.016-0.041;准确率>95%)。SVM 预测分类表现出很高的准确性(85.70%),包括两种常见的上肢运动,手臂链拉动(92.30%)和手紧握(76.20%),对每个患者的逐个病例进行了留一法验证。这些结果表明,成功捕获和分类了运动行为,这些行为对于评估 DBS 手术的最佳大脑目标至关重要。传统的运动测试程序已经证明是有信息的,并有助于确定目标,但在很大程度上仍然是主观的,并且对于资源有限的非西方和农村的 DBS 中心来说是无法获得的。这种方法可以自动化该过程并提高神经运动映射的准确性,以改善手术靶向、优化 DBS 治疗、为神经运动映射和 DBS 植入提供可及途径,并推进我们对不同大脑区域功能的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/944f/9584454/0e39826e41ce/pone.0275490.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验