Huang Wenbo, Jiang Han, Du Yu, Wang Haiyan, Sun Hao, Hung Guang-Uei, Mok Greta S P
Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China.
PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, China.
EJNMMI Phys. 2025 May 6;12(1):43. doi: 10.1186/s40658-025-00756-1.
Dopamine transporter (DAT) SPECT is an effective tool for early Parkinson's disease (PD) detection and heavily hampered by attenuation. Attenuation correction (AC) is the most important correction among other corrections. Transfer learning (TL) with fine-tuning (FT) a pre-trained model has shown potential in enhancing deep learning (DL)-based AC methods. In this study, we investigate leveraging realistic Monte Carlo (MC) simulation data to create a pre-trained model for TL-based AC (TLAC) to improve AC performance for DAT SPECT.
A total number of 200 digital brain phantoms with realistic Tc-TRODAT-1 distribution was used to generate realistic noisy SPECT projections using MC SIMIND program and an analytical projector. One hundred real clinical Tc-TRODAT-1 brain SPECT data were also retrospectively analyzed. All projections were reconstructed with and without CT-based attenuation correction (CTAC/NAC). A 3D conditional generative adversarial network (cGAN) was pre-trained using 200 pairs of simulated NAC and CTAC SPECT data. Subsequently, 8, 24, and 80 pairs of clinical NAC and CTAC DAT SPECT data were employed to fine-tune the pre-trained U-Net generator of cGAN (TLAC-MC). Comparisons were made against without FT (DLAC-MC), training on purely limited clinical data (DLAC-CLI), clinical data with data augmentation (DLAC-AUG), mixed MC and clinical data (DLAC-MIX), TL using analytical simulation data (TLAC-ANA), and Chang's AC (ChangAC). All datasets used for DL-based methods were split to 7/8 for training and 1/8 for validation, and a 1-/2-/5-fold cross-validation were applied to test all 100 clinical datasets, depending on the numbers of clinical data used in the training model.
With 8 available clinical datasets, TLAC-MC achieved the best result in Normalized Mean Squared Error (NMSE) and Structural Similarity Index Measure (SSIM) (TLAC-MC; NMSE = 0.0143 ± 0.0082/SSIM = 0.9355 ± 0.0203), followed by DLAC-AUG, DLAC-MIX, TLAC-ANA, DLAC-CLI, DLAC-MC, ChangAC and NAC. Similar trends exist when increasing the number of clinical datasets. For TL-based AC methods, the fewer clinical datasets available for FT, the greater the improvement as compared to DLAC-CLI using the same number of clinical datasets for training. Joint histograms analysis and Bland-Altman plots of SBR results also demonstrate consistent findings.
TLAC is feasible for DAT SPECT with a pre-trained model generated purely based on simulation data. TLAC-MC demonstrates superior performance over other DL-based AC methods, particularly when limited clinical datasets are available. The closer the pre-training data is to the target domain, the better the performance of the TLAC model.
多巴胺转运体(DAT)单光子发射计算机断层扫描(SPECT)是早期帕金森病(PD)检测的有效工具,但受衰减影响严重。衰减校正(AC)是其他校正中最重要的校正。使用预训练模型进行微调(FT)的迁移学习(TL)已显示出在增强基于深度学习(DL)的AC方法方面的潜力。在本研究中,我们研究利用逼真的蒙特卡罗(MC)模拟数据创建基于TL的AC(TLAC)预训练模型,以提高DAT SPECT的AC性能。
使用200个具有逼真的锝-特洛达特-1分布的数字脑模型,通过MC SIMIND程序和解析投影仪生成逼真的噪声SPECT投影。还回顾性分析了100例真实临床锝-特洛达特-1脑SPECT数据。所有投影均在有和没有基于CT的衰减校正(CTAC/NAC)的情况下进行重建。使用200对模拟的NAC和CTAC SPECT数据对三维条件生成对抗网络(cGAN)进行预训练。随后,使用8、24和80对临床NAC和CTAC DAT SPECT数据对预训练的cGAN的U-Net生成器进行微调(TLAC-MC)。与未进行微调(DLAC-MC)、仅在有限临床数据上训练(DLAC-CLI)、具有数据增强的临床数据(DLAC-AUG)、混合MC和临床数据(DLAC-MIX)、使用解析模拟数据的TL(TLAC-ANA)以及Chang氏AC(ChangAC)进行比较。用于基于DL的方法的所有数据集均分为7/8用于训练和1/8用于验证,并根据训练模型中使用的临床数据数量应用1/2/5倍交叉验证来测试所有100个临床数据集。
在有8个可用临床数据集的情况下,TLAC-MC在归一化均方误差(NMSE)和结构相似性指数测量(SSIM)方面取得了最佳结果(TLAC-MC;NMSE = 0.0143±0.0082/SSIM = 0.9355±0.0203),其次是DLAC-AUG、DLAC-MIX、TLAC-ANA、DLAC-CLI、DLAC-MC、ChangAC和NAC。增加临床数据集数量时也存在类似趋势。对于基于TL的AC方法,可用于微调的临床数据集越少,与使用相同数量临床数据集进行训练的DLAC-CLI相比,改进越大。SBR结果的联合直方图分析和Bland-Altman图也显示了一致的结果。
TLAC对于DAT SPECT是可行的,其预训练模型完全基于模拟数据生成。TLAC-MC表现出优于其他基于DL的AC方法的性能,特别是在临床数据集有限的情况下。预训练数据与目标域越接近,TLAC模型的性能越好。