Milano Marianna, Agapito Giuseppe, Cannataro Mario
Department of Medical and Clinical Surgery, University Magna Græcia, 88100 Catanzaro, Italy.
Data Analytics Research Center, University Magna Græcia, 88100 Catanzaro, Italy.
BioTech (Basel). 2022 Jul 7;11(3):24. doi: 10.3390/biotech11030024.
High-Throughput technologies are producing an increasing volume of data that needs large amounts of data storage, effective data models and efficient, possibly parallel analysis algorithms. Pathway and interactomics data are represented as graphs and add a new dimension of analysis, allowing, among other features, graph-based comparison of organisms' properties. For instance, in biological pathway representation, the nodes can represent proteins, RNA and fat molecules, while the edges represent the interaction between molecules. Otherwise, biological networks such as Protein-Protein Interaction (PPI) Networks, represent the biochemical interactions among proteins by using nodes that model the proteins from a given organism, and edges that model the protein-protein interactions, whereas pathway networks enable the representation of biochemical-reaction cascades that happen within the cells or tissues. In this paper, we discuss the main models for standard representation of pathways and PPI networks, the data models for the representation and exchange of pathway and protein interaction data, the main databases in which they are stored and the alignment algorithms for the comparison of pathways and PPI networks of different organisms. Finally, we discuss the challenges and the limitations of pathways and PPI network representation and analysis. We have identified that network alignment presents a lot of open problems worthy of further investigation, especially concerning pathway alignment.
高通量技术正在产生越来越多的数据,这些数据需要大量的数据存储、有效的数据模型以及高效的、可能是并行的分析算法。通路和相互作用组学数据以图形形式表示,并增加了一个新的分析维度,除其他功能外,还允许基于图形比较生物体的特性。例如,在生物通路表示中,节点可以代表蛋白质、RNA和脂肪分子,而边代表分子之间的相互作用。否则,诸如蛋白质-蛋白质相互作用(PPI)网络之类的生物网络,通过使用对来自给定生物体的蛋白质进行建模的节点以及对蛋白质-蛋白质相互作用进行建模的边来表示蛋白质之间的生化相互作用,而通路网络则能够表示细胞或组织内发生的生化反应级联。在本文中,我们讨论了通路和PPI网络标准表示的主要模型、通路和蛋白质相互作用数据表示与交换的数据模型、存储这些数据的主要数据库以及用于比较不同生物体的通路和PPI网络的比对算法。最后,我们讨论了通路和PPI网络表示与分析的挑战和局限性。我们已经确定网络比对存在许多值得进一步研究的开放性问题,特别是关于通路比对的问题。