Suppr超能文献

基于髋部佩戴式加速度计的卧床时间自动检测用于大型流行病学研究:特罗姆瑟研究

Automatic time in bed detection from hip-worn accelerometers for large epidemiological studies: The Tromsø Study.

作者信息

Weitz Marc, Syed Shaheen, Hopstock Laila A, Morseth Bente, Henriksen André, Horsch Alexander

机构信息

Department of Computer Science, UiT The Arctic University of Norway, Tromsø, Norway.

Department of Seafood Industry, Nofima AS, Tromsø, Norway.

出版信息

PLoS One. 2025 May 6;20(5):e0321558. doi: 10.1371/journal.pone.0321558. eCollection 2025.

Abstract

Accelerometers are frequently used to assess physical activity in large epidemiological studies. They can monitor movement patterns and cycles over several days under free-living conditions and are usually either worn on the wrist or the hip. While wrist-worn accelerometers have been frequently used to additionally assess sleep and time in bed behavior, hip-worn accelerometers have been widely neglected for this task due to their primary focus on physical activity. Here, we present a new method with the objective to identify the time in bed to enable further analysis options for large-scale studies using hip-placement like time in bed or sedentary time analyses. We introduced new and accelerometer-specific data augmentation methods, such as mimicking a wrongly worn accelerometer, additional noise, and random croping, to improve training and generalization performance. Subsequently, we trained a neural network model on a sample from the population-based Tromsø Study and evaluated it on two additional datasets. Our algorithm achieved an accuracy of 94% on the training data, 92% on unseen data from the same population and comparable results to consumer-wearable data obtained from a demographically different population. Generalization performance was overall good, however, we found that on a few particular days or participants, the trained model fundamentally over- or underestimated time in bed (e.g., predicted all or nothing as time in bed). Despite these limitations, we anticipate our approach to be a starting point for more sophisticated methods to identify time in bed or at some point even sleep from hip-worn acceleration signals. This can enable the re-use of already collected data, for example, for longitudinal analyses where sleep-related research questions only recently got into focus or sedentary time needs to be estimated in 24 h wear protocols.

摘要

在大型流行病学研究中,加速度计经常用于评估身体活动。它们可以在自由生活条件下监测几天内的运动模式和周期,通常佩戴在手腕或臀部。虽然手腕佩戴的加速度计经常被用于额外评估睡眠和卧床时间行为,但由于主要关注身体活动,臀部佩戴的加速度计在这项任务中一直被广泛忽视。在此,我们提出一种新方法,目标是识别卧床时间,以便为使用臀部佩戴式加速度计的大规模研究提供更多分析选项,如卧床时间或久坐时间分析。我们引入了新的、针对加速度计的数据增强方法,如模拟佩戴错误的加速度计、添加额外噪声和随机裁剪,以提高训练和泛化性能。随后,我们在基于特罗姆瑟研究的样本上训练了一个神经网络模型,并在另外两个数据集上对其进行评估。我们的算法在训练数据上的准确率达到94%,在来自同一人群的未见数据上达到92%,并且与从人口统计学不同的人群获得的消费级可穿戴数据的结果相当。总体而言,泛化性能良好,然而,我们发现,在一些特定的日子或参与者中,训练后的模型从根本上高估或低估了卧床时间(例如,将所有时间或没有时间预测为卧床时间)。尽管存在这些局限性,我们预计我们的方法将成为更复杂方法的起点,以从臀部佩戴的加速度信号中识别卧床时间,甚至在某些时候识别睡眠。这可以使已经收集的数据得以重新利用,例如,用于纵向分析,其中与睡眠相关的研究问题最近才受到关注,或者在24小时佩戴协议中需要估计久坐时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb61/12054856/5f64d50034af/pone.0321558.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验