Crawshaw Rebecca, Smithson Ross, Hofer Johannes, Hardy Florence J, Roberts George W, Trimble Jonathan S, Kohn Anna R, Levy Colin W, Drost Deborah A, Merten Christian, Heyes Derren J, Obexer Richard, Bach Thorsten, Green Anthony P
Department of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
Department of Chemistry and Catalysis Research Center, School of Natural Sciences, Technische Universität München, Garching, Germany.
Nat Chem. 2025 May 6. doi: 10.1038/s41557-025-01820-0.
The development of [2 + 2] cyclases containing benzophenone triplet sensitizers highlights the potential of engineered enzymes as a platform for stereocontrolled energy transfer photocatalysis. However, the suboptimal photophysical features of benzophenone necessitates the use of ultraviolet light, limits photochemical efficiency and restricts the range of chemistries accessible. Here we engineer an orthogonal Methanococcus jannaschii tyrosyl-tRNA synthetase/tRNA pair for encoding thioxanthone triplet sensitizers into proteins, which can efficiently harness visible light to drive photochemical conversions. Initially, we developed an enantioselective [2 + 2] cyclase that is orders of magnitude more efficient than our previously developed photoenzymes (k = 13 s, >1,300 turnovers). To demonstrate that thioxanthone-containing enzymes can enable more challenging photochemical conversions, we developed a second oxygen-tolerant enzyme that can steer selective C-H insertions of excited quinolone substrates to afford spirocyclic β-lactams with high selectivity (99% e.e., 22:1 d.r.). This photoenzyme also suppresses a competing substrate decomposition pathway observed with small-molecule sensitizers, underscoring the ability of engineered enzymes to control the fate of excited-state intermediates.
含有二苯甲酮三重态敏化剂的[2+2]环化酶的开发突出了工程酶作为立体控制能量转移光催化平台的潜力。然而,二苯甲酮次优的光物理特性需要使用紫外光,限制了光化学效率并限制了可及的化学反应范围。在此,我们设计了一对正交的詹氏甲烷球菌酪氨酰 - tRNA合成酶/tRNA,用于将噻吨酮三重态敏化剂编码到蛋白质中,其能够有效利用可见光驱动光化学转化。最初,我们开发了一种对映选择性[2+2]环化酶,其效率比我们之前开发的光酶高几个数量级(k = 13 s,周转数>1300)。为了证明含噻吨酮的酶能够实现更具挑战性的光化学转化,我们开发了第二种耐氧酶,它能够引导激发态喹诺酮底物的选择性C-H插入,以高选择性(99% 对映体过量,2 : 1非对映体比例)生成螺环β-内酰胺。这种光酶还抑制了小分子敏化剂所观察到的竞争性底物分解途径,突出了工程酶控制激发态中间体命运的能力。