Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA.
Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
Nat Chem. 2024 Aug;16(8):1339-1347. doi: 10.1038/s41557-024-01494-0. Epub 2024 Apr 17.
Despite their intriguing photophysical and photochemical activities, naturally occurring photoenzymes have not yet been repurposed for new-to-nature activities. Here we engineered fatty acid photodecarboxylases to catalyse unnatural photoredox radical C-C bond formation by leveraging the strongly oxidizing excited-state flavoquinone cofactor. Through genome mining, rational engineering and directed evolution, we developed a panel of radical photocyclases to facilitate decarboxylative radical cyclization with excellent chemo-, enantio- and diastereoselectivities. Our high-throughput experimental workflow allowed for the directed evolution of fatty acid photodecarboxylases. An orthogonal set of radical photocyclases was engineered to access all four possible stereoisomers of the stereochemical dyad, affording fully diastereo- and enantiodivergent biotransformations in asymmetric radical biocatalysis. Molecular dynamics simulations show that our evolved radical photocyclases allow near-attack conformations to be easily accessed, enabling chemoselective radical cyclization. The development of stereoselective radical photocyclases provides unnatural C-C-bond-forming activities in natural photoenzyme families, which can be used to tame the stereochemistry of free-radical-mediated reactions.
尽管天然存在的光酶具有有趣的光物理和光化学活性,但它们尚未被重新用于新的自然活性。在这里,我们通过利用强氧化的激发态黄素醌辅因子,对脂肪酸脱羧酶进行工程改造,以催化非天然的光氧化还原自由基 C-C 键形成。通过基因组挖掘、合理的工程设计和定向进化,我们开发了一组自由基环化酶,以优异的化学、对映和非对映选择性促进脱羧基自由基环化。我们的高通量实验工作流程允许对脂肪酸脱羧酶进行定向进化。一组正交的自由基环化酶被设计用于获得立体化学偶联的所有四个可能的立体异构体,从而在不对称自由基生物催化中提供完全非对映和对映体多样性的生物转化。分子动力学模拟表明,我们进化的自由基环化酶允许接近攻击构象,从而能够进行化学选择性自由基环化。立体选择性自由基环化酶的开发为天然光酶家族提供了非自然的 C-C 键形成活性,可用于控制自由基介导反应的立体化学。