Suppr超能文献

通过脂肪酸脱羧酶的再利用和定向进化实现立体发散的光生物催化自由基环化。

Stereodivergent photobiocatalytic radical cyclization through the repurposing and directed evolution of fatty acid photodecarboxylases.

机构信息

Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA.

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Nat Chem. 2024 Aug;16(8):1339-1347. doi: 10.1038/s41557-024-01494-0. Epub 2024 Apr 17.

Abstract

Despite their intriguing photophysical and photochemical activities, naturally occurring photoenzymes have not yet been repurposed for new-to-nature activities. Here we engineered fatty acid photodecarboxylases to catalyse unnatural photoredox radical C-C bond formation by leveraging the strongly oxidizing excited-state flavoquinone cofactor. Through genome mining, rational engineering and directed evolution, we developed a panel of radical photocyclases to facilitate decarboxylative radical cyclization with excellent chemo-, enantio- and diastereoselectivities. Our high-throughput experimental workflow allowed for the directed evolution of fatty acid photodecarboxylases. An orthogonal set of radical photocyclases was engineered to access all four possible stereoisomers of the stereochemical dyad, affording fully diastereo- and enantiodivergent biotransformations in asymmetric radical biocatalysis. Molecular dynamics simulations show that our evolved radical photocyclases allow near-attack conformations to be easily accessed, enabling chemoselective radical cyclization. The development of stereoselective radical photocyclases provides unnatural C-C-bond-forming activities in natural photoenzyme families, which can be used to tame the stereochemistry of free-radical-mediated reactions.

摘要

尽管天然存在的光酶具有有趣的光物理和光化学活性,但它们尚未被重新用于新的自然活性。在这里,我们通过利用强氧化的激发态黄素醌辅因子,对脂肪酸脱羧酶进行工程改造,以催化非天然的光氧化还原自由基 C-C 键形成。通过基因组挖掘、合理的工程设计和定向进化,我们开发了一组自由基环化酶,以优异的化学、对映和非对映选择性促进脱羧基自由基环化。我们的高通量实验工作流程允许对脂肪酸脱羧酶进行定向进化。一组正交的自由基环化酶被设计用于获得立体化学偶联的所有四个可能的立体异构体,从而在不对称自由基生物催化中提供完全非对映和对映体多样性的生物转化。分子动力学模拟表明,我们进化的自由基环化酶允许接近攻击构象,从而能够进行化学选择性自由基环化。立体选择性自由基环化酶的开发为天然光酶家族提供了非自然的 C-C 键形成活性,可用于控制自由基介导反应的立体化学。

相似文献

3
Emergence of a distinct mechanism of C-N bond formation in photoenzymes.
Nature. 2025 Jan;637(8045):362-368. doi: 10.1038/s41586-024-08138-w. Epub 2024 Oct 8.
4
The Natural Redox Cofactor Pyrroloquinoline Quinone (PQQ) Enables Photocatalytic Radical Cyclizations.
Angew Chem Int Ed Engl. 2025 Jul 30:e202505431. doi: 10.1002/anie.202505431.
5
Cooperative Photoenzymatic Catalysis for Enantioselective Fluoroalkylation/Cyclization Cascade.
J Am Chem Soc. 2025 Jul 23;147(29):25508-25516. doi: 10.1021/jacs.5c05656. Epub 2025 Jul 10.
6
Host-Guest Charge-Transfer Mediated Photoredox Catalysis Inside Water-Soluble Nanocages.
Acc Chem Res. 2025 Jul 31. doi: 10.1021/acs.accounts.5c00342.
7
Asymmetric Catalytic Radical Reactions Enabled by Chiral ,'-Dioxide-Metal Complexes.
Acc Chem Res. 2025 Aug 5;58(15):2496-2510. doi: 10.1021/acs.accounts.5c00370. Epub 2025 Jul 12.
8
Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450.
Science. 2021 Dec 24;374(6575):1612-1616. doi: 10.1126/science.abk1603. Epub 2021 Dec 23.
9
Radical-relay C(sp)-H azidation catalyzed by an engineered nonheme iron enzyme.
Methods Enzymol. 2024;703:195-213. doi: 10.1016/bs.mie.2024.07.003. Epub 2024 Jul 23.

引用本文的文献

1
Directed evolution of hydrocarbon-producing enzymes.
Biotechnol Biofuels Bioprod. 2025 Aug 12;18(1):91. doi: 10.1186/s13068-025-02689-4.
2
Enantioselective Radical Hydrocyanoalkylation of Alkenes via Photoenzymatic Catalysis.
JACS Au. 2025 Jul 11;5(7):3625-3631. doi: 10.1021/jacsau.5c00633. eCollection 2025 Jul 28.
4
Efficient and selective energy transfer photoenzymes powered by visible light.
Nat Chem. 2025 May 6. doi: 10.1038/s41557-025-01820-0.
5
Exploring the Increased Activity of the Blue Light-Dependent Photoenzyme Fatty Acid Photodecarboxylase under Violet Light.
ACS Catal. 2025 Mar 31;15(8):6088-6097. doi: 10.1021/acscatal.4c07757. eCollection 2025 Apr 18.
6
Ground-state flavin-dependent enzymes catalyzed enantioselective radical trifluoromethylation.
Nat Commun. 2025 Jan 31;16(1):1225. doi: 10.1038/s41467-025-56437-1.
7
Protein-Driven Electron-Transfer Process in a Fatty Acid Photodecarboxylase.
JACS Au. 2024 Dec 18;5(1):158-168. doi: 10.1021/jacsau.4c00853. eCollection 2025 Jan 27.
8
Threonine Aldolase-Catalyzed Enantioselective α-Alkylation of Amino Acids through Unconventional Photoinduced Radical Initiation.
J Am Chem Soc. 2024 Aug 14;146(32):22476-22484. doi: 10.1021/jacs.4c05949. Epub 2024 Jul 4.

本文引用的文献

1
Enzyme-controlled stereoselective radical cyclization to arenes enabled by metalloredox biocatalysis.
Nat Catal. 2023 Jul;6(7):628-636. doi: 10.1038/s41929-023-00986-5. Epub 2023 Jul 20.
2
Stereoselective amino acid synthesis by synergistic photoredox-pyridoxal radical biocatalysis.
Science. 2023 Jul 28;381(6656):444-451. doi: 10.1126/science.adg2420. Epub 2023 Jul 27.
3
Regioselective Radical Alkylation of Arenes Using Evolved Photoenzymes.
J Am Chem Soc. 2023 May 31;145(21):11866-11874. doi: 10.1021/jacs.3c03607. Epub 2023 May 18.
4
Photobiocatalytic Strategies for Organic Synthesis.
Chem Rev. 2023 May 10;123(9):5459-5520. doi: 10.1021/acs.chemrev.2c00767. Epub 2023 Apr 28.
5
Asymmetric -Alkylation of Nitroalkanes Enzymatic Photoredox Catalysis.
J Am Chem Soc. 2023 Jan 18;145(2):787-793. doi: 10.1021/jacs.2c12197. Epub 2023 Jan 6.
6
Catalysis by Nature's photoenzymes.
Curr Opin Struct Biol. 2022 Dec;77:102491. doi: 10.1016/j.sbi.2022.102491. Epub 2022 Oct 30.
7
Enzymatic Control over Reactive Intermediates Enables Direct Oxidation of Alkenes to Carbonyls by a P450 Iron-Oxo Species.
J Am Chem Soc. 2022 Sep 7;144(35):15954-15968. doi: 10.1021/jacs.2c02567. Epub 2022 Aug 23.
8
An asymmetric sp-sp cross-electrophile coupling using 'ene'-reductases.
Nature. 2022 Oct;610(7931):302-307. doi: 10.1038/s41586-022-05167-1. Epub 2022 Aug 11.
9
Engineered P450 Atom-Transfer Radical Cyclases are Bifunctional Biocatalysts: Reaction Mechanism and Origin of Enantioselectivity.
J Am Chem Soc. 2022 Jul 27;144(29):13344-13355. doi: 10.1021/jacs.2c04937. Epub 2022 Jul 13.
10
Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp)-H azidation.
Science. 2022 May 20;376(6595):869-874. doi: 10.1126/science.abj2830. Epub 2022 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验