Suppr超能文献

利用可调整风险因素的机器学习模型揭示偏头痛风险分层的新见解。

Unveiling new insights into migraine risk stratification using machine learning models of adjustable risk factors.

作者信息

Liu Yu-Chen, Liu Ye-Hai, Pan Hai-Feng, Wang Wei

机构信息

Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.

Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230031, People's Republic of China.

出版信息

J Headache Pain. 2025 May 6;26(1):103. doi: 10.1186/s10194-025-02049-5.

Abstract

BACKGROUND

Migraine ranks as the second-leading cause of global neurological disability, affecting approximately 1.1 billion individuals worldwide with severe quality-of-life impairments. Although adjustable risk factors-including environmental exposures, sleep disturbances, and dietary patterns-are increasingly implicated in pathogenesis of migraine, their causal roles remain insufficiently characterized, and the integration of multimodal evidence lags behind epidemiological needs.

METHODS

We developed a three-step analytical framework combining causal inference, predictive modeling, and burden projection to systematically evaluate modifiable factors associated with migraine. First, two-sample mendelian randomization (MR) assessed causality between five domains (metabolic profiles, body composition, cardiovascular markers, behavioral traits, and psychological states) and the risk of migraine. Second, we trained ensemble machine learning (ML) algorithms that incorporated these factors, with Shapley Additive exPlanations (SHAP) value analysis quantifying predictor importance. Finally, spatiotemporal burden mapping synthesized global incidence, prevalence, and disability-adjusted life years (DALYs) data to project region-specific risk and burden trajectories through 2050.

RESULTS

MR analyses identified significant causal associations between multiple adjustable factors (including overweight, obesity class 2, type 2 diabetes [T2DM], hip circumference [HC], body mass index [BMI], myocardial infarction, and feeling miserable) and the risk of migraine (P < 0.05, FDR-q < 0.05). The Random Forest (RF)-based model achieved excellent discrimination (Area under receiver operating characteristic curve [AUROC] = 0.927), identifying gender, age, HC, waist circumference [WC], BMI, and systolic blood pressure [SBP] as the predictors. Burden mapping projected a global decline in migraine incidence by 2050, yet persistently high prevalence and DALYs burdens underscored the urgency of timely interventions to maximize health gains.

CONCLUSIONS

Integrating causal inference, predictive modeling, and burden projection, this study establishes hierarchical evidence for adjustable migraine determinants and translates findings into scalable prevention frameworks. These findings bridge the gap between biological mechanisms, clinical practice, and public health policy, providing a tripartite framework that harmonizes causal inference, individualized risk prediction, and global burden mapping for migraine prevention.

摘要

背景

偏头痛是全球神经功能障碍的第二大常见病因,全球约有11亿人受其影响,生活质量严重受损。尽管包括环境暴露、睡眠障碍和饮食模式在内的可调整风险因素在偏头痛发病机制中的作用日益受到关注,但其因果关系仍未得到充分阐明,多模态证据的整合也滞后于流行病学需求。

方法

我们开发了一个三步分析框架,结合因果推断、预测建模和负担预测,以系统评估与偏头痛相关的可改变因素。首先,两样本孟德尔随机化(MR)评估了五个领域(代谢谱、身体组成、心血管标志物、行为特征和心理状态)与偏头痛风险之间的因果关系。其次,我们训练了整合这些因素的集成机器学习(ML)算法,并通过Shapley值分析量化预测因子的重要性。最后,时空负担映射综合了全球发病率、患病率和伤残调整生命年(DALY)数据,以预测到2050年特定区域的风险和负担轨迹。

结果

MR分析确定了多个可调整因素(包括超重、2级肥胖、2型糖尿病[T2DM]、臀围[HC]、体重指数[BMI]、心肌梗死和情绪低落)与偏头痛风险之间存在显著因果关联(P < 0.05,FDR-q < 0.05)。基于随机森林(RF)的模型具有出色的辨别能力(受试者工作特征曲线下面积[AUROC]=0.927),确定性别、年龄、HC、腰围[WC]、BMI和收缩压[SBP]为预测因子。负担映射预测到2050年全球偏头痛发病率将下降,但持续较高的患病率和DALY负担凸显了及时干预以最大化健康收益的紧迫性。

结论

本研究整合因果推断、预测建模和负担预测,为可调整的偏头痛决定因素建立了分层证据,并将研究结果转化为可扩展的预防框架。这些发现弥合了生物学机制、临床实践和公共卫生政策之间的差距,提供了一个三方框架,协调了偏头痛预防的因果推断、个体风险预测和全球负担映射。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cb7/12057085/bbfe20e4e339/10194_2025_2049_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验