Hamed Mahmoud, Zayed Berlanty A, Mansour Fotouh R
Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo, 44971, Egypt.
MIU Chemistry Society (MIU-CS), Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo, 44971, Egypt.
BMC Public Health. 2025 May 6;25(1):1671. doi: 10.1186/s12889-025-22624-4.
Predicting cancer incidence has long been a challenge for clinicians and researchers. Accurate predictions are essential for health planning to ensure adequate resources for diagnosis, treatment, and rehabilitation. Current prediction methods rely on historical data, assuming persistent patterns of cancer incidence.
In this study, the Google Trends tool was used to obtain the relative search volume index (RSVI) for the topic "cancer" each year from 2017 to 2023 in the United States and worldwide. The proposed model incorporated actual cancer incidence rates and yearly changes in RSVI.
The model was applied to predict the rates of new cancer cases in fifty American states over four consecutive years (2017, 2018, 2019, 2020). The selection of years was restricted with data availability. In most states, the percentage error did not exceed 6%. The high degree of similarity between the actual and predicted cancer incidence rates was notable. Similar results were obtained when predicting cancer incidence rates in the countries studied.
The model has successfully provided accurate short-term predictions of cancer incidence rates across all 50 American states and 54 countries since 2017.
长期以来,预测癌症发病率一直是临床医生和研究人员面临的一项挑战。准确的预测对于卫生规划至关重要,以确保有足够的资源用于诊断、治疗和康复。当前的预测方法依赖历史数据,假定癌症发病率存在持续模式。
在本研究中,谷歌趋势工具被用于获取2017年至2023年美国及全球每年“癌症”主题的相对搜索量指数(RSVI)。所提出的模型纳入了实际癌症发病率和RSVI的年度变化。
该模型被应用于连续四年(2017年、2018年、2019年、2020年)预测美国五十个州的新癌症病例发生率。年份的选择受数据可用性限制。在大多数州,百分比误差不超过6%。实际和预测的癌症发病率之间的高度相似性值得注意。在预测所研究国家的癌症发病率时也获得了类似结果。
自2017年以来,该模型已成功对美国所有50个州和54个国家的癌症发病率提供了准确的短期预测。