Guo Yulong, Ma Changsheng, Zhao Wenzheng, Kuang Haiou, Tian Yakai, Zhang Haoyuan, Xue Yunfei, Li-Byarlay Hongmei, Dong Kun, Gong Xueyang
Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
Insects. 2025 Apr 1;16(4):372. doi: 10.3390/insects16040372.
Pesticides such as neonicotinoids frequently harm beneficial insect pollinators and affect their survival, social behavior, digestive system, and metabolism. Investigating the mechanisms behind these impairments is crucial for enhancing pesticide risk assessments. , a native honeybee species in Asia, has received limited research attention regarding the toxicological mechanisms of thiamethoxam (TMX) exposure. We exposed newly emerged worker bees of to a field-relevant dose of TMX (400 ng/g) under laboratory conditions to examine whether TMX exposure triggers similar or distinct effects in different biological processes and tissues. Our results demonstrate that TMX damages the gut cell structure and significantly increases mortality. Gut transcriptomic analysis revealed that the activation of signaling pathways such as glycosphingolipid biosynthesis, Notch signaling, and Wnt signaling likely contributed to structural damage in gut cells. Head transcriptomic results indicated that the activation of pathways including pyruvate metabolism, glycolysis/gluconeogenesis, thiamine metabolism, and riboflavin metabolism might negatively affect the stability of the neural system in . The metabolic dysfunction of glycine, serine, threonine, as well as glycerophospholipids potentially impairs the neural system, leading to behavioral abnormalities and mortality. In summary, field-level TMX damages the gut cell structure, destabilizes the neural system, and increases the mortality rate of . These findings demonstrate that TMX exposure induces complex, tissue-specific effects. This study provides a comprehensive understanding of the molecular and physiological impacts of TMX on , offering valuable insights for the conservation and protection of this important pollinator species.
新烟碱类等农药经常会伤害有益昆虫传粉者,并影响它们的生存、社会行为、消化系统和新陈代谢。研究这些损害背后的机制对于加强农药风险评估至关重要。亚洲本土蜜蜂物种——东方蜜蜂,在噻虫嗪(TMX)暴露的毒理学机制方面受到的研究关注有限。我们在实验室条件下,将新羽化的东方蜜蜂工蜂暴露于田间相关剂量的TMX(400纳克/克)中,以研究TMX暴露是否会在不同生物过程和组织中引发相似或不同的影响。我们的结果表明,TMX会损害肠道细胞结构并显著增加死亡率。肠道转录组分析显示,糖鞘脂生物合成、Notch信号传导和Wnt信号传导等信号通路的激活可能导致肠道细胞的结构损伤。头部转录组结果表明,包括丙酮酸代谢、糖酵解/糖异生、硫胺素代谢和核黄素代谢在内的通路激活可能会对东方蜜蜂的神经系统稳定性产生负面影响。甘氨酸、丝氨酸、苏氨酸以及甘油磷脂的代谢功能障碍可能会损害神经系统,导致行为异常和死亡。总之,田间水平的TMX会损害肠道细胞结构,破坏神经系统稳定性,并增加东方蜜蜂的死亡率。这些发现表明,TMX暴露会引发复杂的、组织特异性的影响。本研究全面了解了TMX对东方蜜蜂的分子和生理影响,为保护这一重要传粉者物种提供了有价值的见解。