Suppr超能文献

深度学习辅助在RNA测序数据中鉴定SCUBE2和SLC16A5组合作为前列腺癌一种新型的特异性潜在诊断生物标志物。

Deep learning assisted identification of SCUBE2 and SLC16 A5 combination in RNA-sequencing data as a novel specific potential diagnostic biomarker in prostate cancer.

作者信息

Khorshid Sokhangouy Saeideh, Zeinali Mohsen, Fathi Sina, Nazari Elham

机构信息

Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

Computer Engineering Department, Islamic Azad University Khomeinishahr Branch, Isfahan, Iran.

出版信息

Med Biol Eng Comput. 2025 May 8. doi: 10.1007/s11517-025-03365-3.

Abstract

Despite the extensive use of biomarkers like PSA, AMACR, and PCA3, prostate cancer (PCa) is still a major clinical challenge, demanding the development of more precise and specific methods for diagnosis. In this study, a deep learning model was applied to identify ten key genes from a pool of 68 common differentially expressed genes in the three transcriptomic datasets. The model demonstrated high performance, with the accuracy of 0.969, R of 0.88, and PR-AUC of 0.98. Notably, selected genes have been previously reported as functionally important in various cancers. Among them, SCUBE2 stands out as a novel potential diagnostic biomarker in prostate cancer, showing a strong diagnostic performance in the TCGA dataset with AUC = 0.84, sensitivity = 0.76, and specificity = 0.84. SCUBE2 is a secreted glycoprotein known for its ability to suppress tumor growth, cell migration, and epithelial-mesenchymal transition (EMT) in several cancer types, including gliomas, breast, and colorectal cancers, mainly through its regulation of signaling pathways such as Hedgehog (Shh). Although its role in prostate cancer (PCa) has not been previously explored, its consistent downregulation across multiple PCa datasets in this study suggests it may act as a tumor suppressor, warranting further investigation. Another candidate, SLC16A5, showed moderate performance individually (AUC = 0.62, SP = 0.81, SE = 0.42 in GSE88808), but its combination with SCUBE2 significantly enhanced diagnostic accuracy (combined AUC = 0.76, SE = 0.75, SP = 0.71). SLC16A5 is a monocarboxylate transporter involved in metabolic reprogramming, and prior studies have linked its downregulation to immune infiltration and poor prognosis in PCa. Functional enrichment analysis of the ten identified genes revealed strong involvement of these genes in cancer-related processes, including gap junction assembly, tight junction formation, efflux transporter activity, and pathways such as Hedgehog signaling, leukocyte transendothelial migration, and cell-cell adhesion. Hub gene analysis further confirmed the central roles of identified genes such as CAV1, GJA1, AMACR, and CLDN8, which are well-documented in cancer progression, metastasis, or therapeutic resistance. In summary, this study identifies SCUBE2 as a novel potential diagnostic biomarker for prostate cancer and supports the use of AI-driven gene discovery in identifying key players in tumor biology. The combination of SCUBE2 with SLC16A5 not only enhances diagnostic precision but also opens new avenues for functional and clinical validation, ultimately contributing to the development of more accurate, multi-gene diagnostic panels for PCa.

摘要

尽管前列腺特异性抗原(PSA)、α-甲基酰基辅酶A消旋酶(AMACR)和前列腺癌基因3(PCA3)等生物标志物已被广泛应用,但前列腺癌(PCa)仍是一项重大临床挑战,需要开发更精确、更具特异性的诊断方法。在本研究中,应用深度学习模型从三个转录组数据集中的68个常见差异表达基因中识别出10个关键基因。该模型表现出高性能,准确率为0.969,R值为0.88,PR-AUC为0.98。值得注意的是,先前已有报道称所选基因在各种癌症中具有重要功能。其中,信号肽CUB和表皮生长因子样结构域蛋白2(SCUBE2)作为前列腺癌中一种新的潜在诊断生物标志物脱颖而出,在癌症基因组图谱(TCGA)数据集中表现出强大的诊断性能,曲线下面积(AUC)=0.84,灵敏度=0.76,特异性=0.84。SCUBE2是一种分泌型糖蛋白,已知其能够抑制多种癌症类型(包括神经胶质瘤、乳腺癌和结直肠癌)的肿瘤生长、细胞迁移和上皮-间质转化(EMT),主要是通过调节刺猬信号通路(Shh)等信号通路来实现的。尽管其在前列腺癌(PCa)中的作用此前尚未被探索,但本研究中多个PCa数据集一致显示其表达下调,这表明它可能作为一种肿瘤抑制因子,值得进一步研究。另一个候选基因溶质载体家族16成员5(SLC16A5)单独表现出中等性能(在GSE88808数据集中,AUC=0.62,SP=0.81,SE=0.42),但其与SCUBE2联合使用可显著提高诊断准确性(联合AUC=0.76,SE=0.75,SP=0.71)。SLC16A5是一种参与代谢重编程的单羧酸转运蛋白,先前的研究已将其下调与PCa中的免疫浸润和不良预后联系起来。对这10个已识别基因的功能富集分析表明,这些基因强烈参与癌症相关过程,包括缝隙连接组装、紧密连接形成、外流转运体活性以及刺猬信号通路、白细胞跨内皮迁移和细胞间黏附等信号通路。中心基因分析进一步证实了已识别基因(如小窝蛋白1(CAV1)、缝隙连接蛋白43(GJA1)、AMACR和紧密连接蛋白8(CLDN8))的核心作用,这些基因在癌症进展、转移或治疗耐药性方面已有充分记录。总之,本研究将SCUBE2鉴定为前列腺癌一种新的潜在诊断生物标志物,并支持使用人工智能驱动的基因发现来识别肿瘤生物学中的关键因子。SCUBE2与SLC16A5联合使用不仅提高了诊断精度,还为功能和临床验证开辟了新途径,最终有助于开发更准确的PCa多基因诊断面板。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验