Aguilera Lais Fernandes, Araujo Leandro Oliveira, Facchinatto William Marcondes, Lima Regiane Godoy, Pontes Montcharles da Silva, Pulcherio Jhoenne Helena Vasconcelos, Caires Cynthia Suzyelen Albuquerque, de Oliveira Kleber Thiago, Oliveira Samuel Leite de, Caires Anderson Rodrigues Lima
Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil.
Departamento de Química, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luis. km 235─SP-310, CEP 13565-905 São Carlos, SP, Brazil.
ACS Appl Bio Mater. 2025 May 19;8(5):4055-4064. doi: 10.1021/acsabm.5c00200. Epub 2025 May 7.
Antimicrobial photodynamic inactivation (aPDI) represents a promising alternative strategy for combating bacterial infections. This study investigates the potential of curcumin-loaded chitosan nanoparticles (CurChNPs) as novel nanoenabled photosensitizer agents for bacterial photoinactivation. CurChNPs were synthesized using an innovative dual synthesis approach by combination of nanoprecipitation and ionic gelation methods; their physicochemical properties were also characterized. The nanoparticles exhibited excellent solubility in aqueous solutions, high curcumin encapsulation efficiency (96%), and controlled release profile. Photoinactivation assays were conducted against (ATCC 25923) and (ATCC 25922) to evaluate the efficacy of CurChNPs in aPDI. The nanoparticles exhibited significant photobactericidal activity when irradiated with blue light (450 nm, 28.84 mW·cm). Mechanistic studies confirmed the generation of reactive oxygen species (ROS) as the primary mode of photoinactivation. Microscopy analyses revealed structural damage to bacterial cell membranes, culminating in cell lysis. These findings highlight the synergistic effects of the photodynamic activity of curcumin and the antimicrobial activity of chitosan, demonstrating that CurChNPs are a promising platform for the eradication of bacterial infections. This work contributes to the development of sustainable, nanotechnology-based approaches for addressing bacterial infections, particularly against resilient Gram-negative pathogens. Future studies may explore the potential of CurChNPs against antibiotic-resistant bacterial strains.
抗菌光动力灭活(aPDI)是一种对抗细菌感染的有前景的替代策略。本研究调查了负载姜黄素的壳聚糖纳米颗粒(CurChNPs)作为用于细菌光灭活的新型纳米光敏剂的潜力。采用纳米沉淀法和离子凝胶法相结合的创新双合成方法合成了CurChNPs;还对其理化性质进行了表征。这些纳米颗粒在水溶液中表现出优异的溶解性、高姜黄素包封效率(96%)和可控释放特性。针对金黄色葡萄球菌(ATCC 25923)和大肠杆菌(ATCC 25922)进行了光灭活试验,以评估CurChNPs在aPDI中的效果。当用蓝光(450 nm,28.84 mW·cm)照射时,这些纳米颗粒表现出显著的光杀菌活性。机理研究证实活性氧(ROS)的产生是光灭活的主要模式。显微镜分析揭示了细菌细胞膜的结构损伤,最终导致细胞裂解。这些发现突出了姜黄素的光动力活性和壳聚糖的抗菌活性的协同作用,表明CurChNPs是根除细菌感染的一个有前景的平台。这项工作有助于开发基于纳米技术的可持续方法来应对细菌感染,特别是针对有抗性的革兰氏阴性病原体。未来的研究可能会探索CurChNPs对抗抗生素耐药菌株的潜力。