Suppr超能文献

数字病理学中用于全切片图像分析的高性能数据管理

High-performance Data Management for Whole Slide Image Analysis in Digital Pathology.

作者信息

Leng Haoju, Deng Ruining, Bao Shunxing, Fang Dazheng, Millis Bryan A, Tang Yucheng, Yang Haichun, Wang Xiao, Peng Yifan, Wan Lipeng, Huo Yuankai

机构信息

Department of Computer Science, Vanderbilt University, Nashville, TN, USA.

Department of Electrical and Computer Engineering, Vanderbilt University Medical Center, Nashville, TN, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2024 Feb;12933. doi: 10.1117/12.3006273. Epub 2024 Apr 3.

Abstract

When dealing with giga-pixel digital pathology in whole-slide imaging, a notable proportion of data records holds relevance during each analysis operation. For instance, when deploying an image analysis algorithm on whole-slide images (WSI), the computational bottleneck often lies in the input-output (I/O) system. This is particularly notable as patch-level processing introduces a considerable I/O load onto the computer system. However, this data management process could be further paralleled, given the typical independence of patch-level image processes across different patches. This paper details our endeavors in tackling this data access challenge by implementing the Adaptable IO System version 2 (ADIOS2). Our focus has been constructing and releasing a digital pathology-centric pipeline using ADIOS2, which facilitates streamlined data management across WSIs. Additionally, we've developed strategies aimed at curtailing data retrieval times. The performance evaluation encompasses two key scenarios: (1) a pure CPU-based image analysis scenario ("CPU scenario"), and (2) a GPU-based deep learning framework scenario ("GPU scenario"). Our findings reveal noteworthy outcomes. Under the CPU scenario, ADIOS2 showcases an impressive two-fold speed-up compared to the brute-force approach. In the GPU scenario, its performance stands on par with the cutting-edge GPU I/O acceleration framework, NVIDIA Magnum IO GPU Direct Storage (GDS). From what we know, this appears to be among the initial instances, if any, of utilizing ADIOS2 within the field of digital pathology. The source code has been made publicly available at https://github.com/hrlblab/adios.

摘要

在处理全切片成像中的千兆像素数字病理学问题时,在每次分析操作期间,相当一部分数据记录都具有相关性。例如,在全切片图像(WSI)上部署图像分析算法时,计算瓶颈通常在于输入输出(I/O)系统。这一点尤为明显,因为补丁级处理会给计算机系统带来相当大的I/O负载。然而,鉴于不同补丁之间补丁级图像过程的典型独立性,这种数据管理过程可以进一步并行化。本文详细介绍了我们通过实施自适应I/O系统版本2(ADIOS2)来应对这一数据访问挑战的努力。我们的重点一直是使用ADIOS2构建并发布一个以数字病理学为中心的管道,这有助于简化跨WSI的数据管理。此外,我们还制定了旨在缩短数据检索时间的策略。性能评估包括两个关键场景:(1)基于纯CPU的图像分析场景(“CPU场景”),以及(2)基于GPU的深度学习框架场景(“GPU场景”)。我们的研究结果揭示了值得注意的成果。在CPU场景下,与暴力方法相比,ADIOS2的速度提升了两倍,令人印象深刻。在GPU场景下,其性能与前沿的GPU I/O加速框架NVIDIA Magnum IO GPU Direct Storage(GDS)相当。据我们所知,这似乎是数字病理学领域中使用ADIOS2的首批实例之一(如果有的话)。源代码已在https://github.com/hrlblab/adios上公开提供。

相似文献

本文引用的文献

2
Building robust pathology image analyses with uncertainty quantification.利用不确定性量化构建稳健的病理学图像分析。
Comput Methods Programs Biomed. 2021 Sep;208:106291. doi: 10.1016/j.cmpb.2021.106291. Epub 2021 Jul 24.
5
Computer-aided diagnostics in digital pathology.
Cytometry A. 2017 Jun;91(6):551-554. doi: 10.1002/cyto.a.23151.
8
Pathology imaging informatics for quantitative analysis of whole-slide images.病理学成像信息学用于全切片图像的定量分析。
J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1099-108. doi: 10.1136/amiajnl-2012-001540. Epub 2013 Aug 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验