Leng Haoju, Deng Ruining, Bao Shunxing, Fang Dazheng, Millis Bryan A, Tang Yucheng, Yang Haichun, Wang Xiao, Peng Yifan, Wan Lipeng, Huo Yuankai
Department of Computer Science, Vanderbilt University, Nashville, TN, USA.
Department of Electrical and Computer Engineering, Vanderbilt University Medical Center, Nashville, TN, USA.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12933. doi: 10.1117/12.3006273. Epub 2024 Apr 3.
When dealing with giga-pixel digital pathology in whole-slide imaging, a notable proportion of data records holds relevance during each analysis operation. For instance, when deploying an image analysis algorithm on whole-slide images (WSI), the computational bottleneck often lies in the input-output (I/O) system. This is particularly notable as patch-level processing introduces a considerable I/O load onto the computer system. However, this data management process could be further paralleled, given the typical independence of patch-level image processes across different patches. This paper details our endeavors in tackling this data access challenge by implementing the Adaptable IO System version 2 (ADIOS2). Our focus has been constructing and releasing a digital pathology-centric pipeline using ADIOS2, which facilitates streamlined data management across WSIs. Additionally, we've developed strategies aimed at curtailing data retrieval times. The performance evaluation encompasses two key scenarios: (1) a pure CPU-based image analysis scenario ("CPU scenario"), and (2) a GPU-based deep learning framework scenario ("GPU scenario"). Our findings reveal noteworthy outcomes. Under the CPU scenario, ADIOS2 showcases an impressive two-fold speed-up compared to the brute-force approach. In the GPU scenario, its performance stands on par with the cutting-edge GPU I/O acceleration framework, NVIDIA Magnum IO GPU Direct Storage (GDS). From what we know, this appears to be among the initial instances, if any, of utilizing ADIOS2 within the field of digital pathology. The source code has been made publicly available at https://github.com/hrlblab/adios.
在处理全切片成像中的千兆像素数字病理学问题时,在每次分析操作期间,相当一部分数据记录都具有相关性。例如,在全切片图像(WSI)上部署图像分析算法时,计算瓶颈通常在于输入输出(I/O)系统。这一点尤为明显,因为补丁级处理会给计算机系统带来相当大的I/O负载。然而,鉴于不同补丁之间补丁级图像过程的典型独立性,这种数据管理过程可以进一步并行化。本文详细介绍了我们通过实施自适应I/O系统版本2(ADIOS2)来应对这一数据访问挑战的努力。我们的重点一直是使用ADIOS2构建并发布一个以数字病理学为中心的管道,这有助于简化跨WSI的数据管理。此外,我们还制定了旨在缩短数据检索时间的策略。性能评估包括两个关键场景:(1)基于纯CPU的图像分析场景(“CPU场景”),以及(2)基于GPU的深度学习框架场景(“GPU场景”)。我们的研究结果揭示了值得注意的成果。在CPU场景下,与暴力方法相比,ADIOS2的速度提升了两倍,令人印象深刻。在GPU场景下,其性能与前沿的GPU I/O加速框架NVIDIA Magnum IO GPU Direct Storage(GDS)相当。据我们所知,这似乎是数字病理学领域中使用ADIOS2的首批实例之一(如果有的话)。源代码已在https://github.com/hrlblab/adios上公开提供。