Suppr超能文献

通过学习具有分子间邻接关系的原子图来对蛋白质-配体结合结构进行评分。

Scoring protein-ligand binding structures through learning atomic graphs with inter-molecular adjacency.

作者信息

Wang Debby D, Huang Yuting

机构信息

School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong.

出版信息

PLoS Comput Biol. 2025 May 9;21(5):e1013074. doi: 10.1371/journal.pcbi.1013074. eCollection 2025 May.

Abstract

With a burgeoning number of artificial intelligence (AI) applications in various fields, biomolecular science has also given a big welcome to advanced AI techniques in recent years. In this broad field, scoring a protein-ligand binding structure to output the binding strength is a crucial problem that heavily relates to computational drug discovery. Aiming at this problem, we have proposed an efficient scoring framework using deep learning techniques. This framework describes a binding structure by a high-resolution atomic graph, places a focus on the inter-molecular interactions and learns the graph in a rational way. For a protein-ligand binding complex, the generated atomic graph reserves key information of the atoms (as graph nodes), and focuses on inter-molecular interactions (as graph edges) that can be identified by introducing multiple distance ranges to the atom pairs within the binding area. To provide more confidence in the predicted binding strengths, we have interpreted the deep learning model from the model level and in a post-hoc analysis. The proposed learning framework has been demonstrated to have competitive performance in scoring and screening tasks, which will prospectively promote the development of related fields further.

摘要

随着人工智能(AI)在各个领域的应用迅速增加,近年来生物分子科学也对先进的AI技术表示热烈欢迎。在这个广阔的领域中,对蛋白质-配体结合结构进行评分以输出结合强度是一个至关重要的问题,与计算药物发现密切相关。针对这个问题,我们提出了一种使用深度学习技术的高效评分框架。该框架通过高分辨率原子图来描述结合结构,关注分子间相互作用,并以合理的方式学习该图。对于蛋白质-配体结合复合物,生成的原子图保留了原子的关键信息(作为图节点),并关注分子间相互作用(作为图边),这些相互作用可以通过在结合区域内的原子对引入多个距离范围来识别。为了对预测的结合强度提供更多信心,我们从模型层面和事后分析中对深度学习模型进行了解释。所提出的学习框架已被证明在评分和筛选任务中具有竞争力,这将有望进一步推动相关领域的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8066/12091896/f28fd7f0f6e8/pcbi.1013074.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验