Xiong Shuyun, Si Dongxu, Ding Meizhu, Tang Cuiying, Zhu Jinling, Li Danni, Lei Ying, Huang Lexian, Chen Xiaohua, Chen Jicai
Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510000, China.
BMC Geriatr. 2025 May 9;25(1):322. doi: 10.1186/s12877-025-05980-z.
Suicide poses a substantial public health challenge globally, with the elderly population being particularly vulnerable. Research into suicide risk factors among elderly inpatients with non-psychiatric disorders remains limited. This investigation focused on crafting a machine learning-based prediction model for suicidal ideation (SI) in this population to aid suicide prevention efforts in general hospitals.
A total of 807 non-psychiatric elderly inpatients aged over 60 were assessed using demographic and clinical data, and SI was measured using the Patient Health Questionnaire-9 (PHQ-9). Data were processed utilizing machine learning algorithms, and predictive models were developed using multiple logistic regression, Nomogram, and Random Forest models.
Key predictors included PHQ-8, Athens Insomnia Scale, hospitalization frequency, Perceived Social Support from Family scale, comorbidities, income, and employment status. Both models demonstrated excellent predictive performance, with AUC values exceeding 0.9 for both training and test sets. Notably, the Random Forest model outperformed others, achieving an AUC of 0.958, with high accuracy (0.952), precision (0.962), sensitivity (0.987), and an F1 score of 0.974.
These models offer valuable tools for suicide risk prediction in elderly non-psychiatric inpatients, supporting clinical prevention strategies.
自杀在全球范围内构成了重大的公共卫生挑战,老年人群体尤其脆弱。对患有非精神疾病的老年住院患者自杀风险因素的研究仍然有限。本研究旨在为该人群构建一个基于机器学习的自杀意念(SI)预测模型,以协助综合医院的自杀预防工作。
共对807名60岁以上的非精神疾病老年住院患者进行了评估,收集了人口统计学和临床数据,并使用患者健康问卷-9(PHQ-9)测量自杀意念。利用机器学习算法对数据进行处理,并使用多元逻辑回归、列线图和随机森林模型开发预测模型。
关键预测因素包括PHQ-8、雅典失眠量表、住院频率、家庭感知社会支持量表、合并症、收入和就业状况。两个模型均表现出出色的预测性能,训练集和测试集的AUC值均超过0.9。值得注意的是,随机森林模型表现优于其他模型,AUC为0.958,具有较高的准确率(0.952)、精确率(0.962)、灵敏度(0.987)和F1分数0.974。
这些模型为老年非精神疾病住院患者的自杀风险预测提供了有价值的工具,支持临床预防策略。