Bellver-Arnau Jesús, Blanco-Sierra Laura, Escartin Santi, Mariani Simone, Bartumeus Frederic
Departament d'Ecologia i Complexitat, Centre d'Estudis Avançats de Blanes (CEAB), Blanes, Spain.
Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Cerdanyola del Vallès, Spain.
Parasit Vectors. 2025 May 11;18(1):168. doi: 10.1186/s13071-025-06791-2.
The rise in mosquito-borne diseases such as dengue, Zika, and chikungunya, exacerbated by the ever-expanding habitats of Aedes albopictus, poses a significant public health risk. Even marginal improvements in vector control efficacy can be crucial in mitigating these risks.
In this study, we employed a metapopulation model to simulate Ae. albopictus population dynamics and dispersal, optimizing the timing and spatial allocation of larvicidal treatments.
Simulations revealed that larvicide treatments are most effective when applied preventively, early in the mosquito season, particularly under conditions of lower-than-average cumulative rainfall and, to a minor extent, colder-than-average temperatures, as these conditions limit larvae proliferation. We found that breeding site characteristics, particularly surface area and maximum water holding capacity, are critical in determining optimal treatment allocation in scarce-resource scenarios. However, a cost-effectiveness trade-off exists, as larger breeding sites offer more substantial reductions in mosquito populations but also demand higher larvicide dosages. Spatial factors such as breeding site distribution had minimal impact on treatment efficacy, possibly due to the high mobility range of adult mosquitoes compared with the size of the study area.
Our results highlight the superior efficiency of the optimized approach in comparison with routine vector control strategies, especially when resources are limited, offering a more effective use of larvicide in controlling mosquito populations. This study demonstrates that vector control strategies for Ae. albopictus can be significantly enhanced by considering climatic variables and breeding site characteristics in treatment planning. This research provides a framework for developing cost-effective and flexible mosquito control programs that can adapt to environmental conditions, potentially improving public health outcomes by reducing the transmission risk of mosquito-borne diseases.
登革热、寨卡病毒病和基孔肯雅热等蚊媒疾病的增加,因白纹伊蚊栖息地的不断扩大而加剧,构成了重大的公共卫生风险。即使病媒控制效果有微小改善,对于减轻这些风险也可能至关重要。
在本研究中,我们采用了集合种群模型来模拟白纹伊蚊的种群动态和扩散,优化杀幼虫处理的时间和空间分配。
模拟结果显示,在蚊虫季节早期进行预防性杀幼虫处理最为有效,尤其是在累积降雨量低于平均水平以及在较小程度上温度低于平均水平的情况下,因为这些条件会限制幼虫繁殖。我们发现,繁殖地特征,特别是表面积和最大持水量,在稀缺资源情况下确定最佳处理分配方面至关重要。然而,存在成本效益权衡,因为较大的繁殖地能使蚊虫数量大幅减少,但也需要更高的杀幼虫剂量。繁殖地分布等空间因素对处理效果影响极小,这可能是由于与研究区域大小相比,成年蚊子的活动范围较大。
我们的结果凸显了优化方法相较于常规病媒控制策略具有更高的效率,特别是在资源有限时,能更有效地利用杀幼虫剂来控制蚊虫数量。本研究表明,通过在处理规划中考虑气候变量和繁殖地特征,白纹伊蚊的病媒控制策略可得到显著加强。本研究为制定具有成本效益且灵活的蚊虫控制计划提供了一个框架,该计划可适应环境条件,通过降低蚊媒疾病传播风险,可能改善公共卫生结果。