Huang Yuhao, Gopal Jay, Kakusa Bina, Li Alice H, Huang Weichen, Wang Jeffrey B, Persad Amit, Ramayya Ashwin, Parvizi Josef, Buch Vivek P, Keller Corey J
Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA.
Brown University, Providence, RI, USA.
Nat Commun. 2025 May 11;16(1):4371. doi: 10.1038/s41467-025-59756-5.
Pain remains poorly understood in task-free contexts, limiting our understanding of its neurobehavioral basis in naturalistic settings. Here, we use a multimodal, data-driven approach with intracranial electroencephalography, pain self-reports, and facial expression analysis to study acute pain in twelve epilepsy patients under continuous neural and audiovisual monitoring. Using machine learning, we successfully decode individual participants' high versus low pain states from distributed neural activity, involving mesolimbic regions, striatum, and temporoparietal cortex. Neural representation of pain remains stable for hours and is modulated by pain onset and relief. Objective facial expressions also classify pain states, concordant with neural findings. Importantly, we identify transient periods of momentary pain as a distinct naturalistic acute pain measure, which can be reliably discriminated from affect-neutral periods using neural and facial features. These findings reveal reliable neurobehavioral markers of acute pain across naturalistic contexts, underscoring the potential for monitoring and personalizing pain interventions in real-world settings.
在无任务情境中,疼痛仍未得到充分理解,这限制了我们对其自然环境下神经行为基础的理解。在此,我们采用多模态、数据驱动的方法,结合颅内脑电图、疼痛自我报告和面部表情分析,在持续的神经和视听监测下研究12名癫痫患者的急性疼痛。利用机器学习,我们成功地从涉及中脑边缘区域、纹状体和颞顶叶皮层的分布式神经活动中解码出个体参与者的高疼痛状态与低疼痛状态。疼痛的神经表征在数小时内保持稳定,并受疼痛发作和缓解的调节。客观的面部表情也能对疼痛状态进行分类,与神经学发现一致。重要的是,我们将瞬间疼痛的短暂时期识别为一种独特的自然急性疼痛指标,利用神经和面部特征可以可靠地将其与情感中性时期区分开来。这些发现揭示了自然环境下急性疼痛的可靠神经行为标志物,强调了在现实环境中监测和个性化疼痛干预的潜力。