Hashem Suhaib M, Yamashiro Stanley M, Kato Takahide, Matsumoto Takaaki, Marmarelis Vasilis Z
A. E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States.
National Institute of Technology, Toyota College, Toyota, Japan.
Front Physiol. 2025 Apr 25;16:1528519. doi: 10.3389/fphys.2025.1528519. eCollection 2025.
CO2 mediated ventilation is mainly controlled by two homeostatic mechanisms. The central chemoreceptors are slower mechanisms that focus on blood pH sensing in the brain stem while the peripheral chemoreceptors are quicker to respond and reside in the carotid bodies. Quantification of these mechanisms in humans remain debated.
To quantify the impact that the central and peripheral chemoreceptors have on ventilation in response to changes in PETCO2 during exercise with normoxic breathing and 3% CO2 inhalation.
Six healthy males participated in a 5-stage bike protocol with and without 3% CO2 inhalation. We analyzed the time series data of their breath-by-breath PETCO2 and ventilation and generated a one input-one output model via the Laguerre expansion technique (LET) to construct the gain function and quantify the low (0.002-0.029 Hz) and high (0.03-0.15 Hz) frequency components using the weighted gain averages (WGA) as estimators of central and peripheral chemoreflex mechanisms respectively.
3% CO2 inhalation caused a significant increase the high frequency WGAs at rest and in all levels of exercise except heavy exercise. The low frequency WGAs, however, only maintain significance during rest and the baseline session of exercise.
Changes in WGA can be used as quantitative estimates of central and peripheral chemoreflexes. 3% CO2 activates both reflexes and is more apparent in the higher frequency WGAs during exercise due to the oxygen dependent mechanisms effects of exercise.
二氧化碳介导的通气主要受两种稳态机制控制。中枢化学感受器是较慢的机制,专注于脑干中的血液pH值感知,而外周化学感受器反应更快,位于颈动脉体。对这些机制在人体中的量化仍存在争议。
量化在常氧呼吸和吸入3%二氧化碳的运动过程中,中枢和外周化学感受器对通气量随呼气末二氧化碳分压(PETCO2)变化的影响。
六名健康男性参与了一个五阶段的自行车运动方案,包括吸入和不吸入3%二氧化碳的情况。我们分析了他们逐次呼吸的PETCO2和通气量的时间序列数据,并通过拉盖尔展开技术(LET)生成一个单输入单输出模型,以构建增益函数,并分别使用加权增益平均值(WGA)作为中枢和外周化学反射机制的估计值,量化低频(0.002 - 0.029赫兹)和高频(0.03 - 0.15赫兹)成分。
吸入3%二氧化碳导致在休息时以及除剧烈运动外的所有运动水平下高频WGA显著增加。然而,低频WGA仅在休息和运动的基线阶段保持显著。
WGA的变化可作为中枢和外周化学反射的定量估计。3%二氧化碳激活了两种反射,并且由于运动的氧依赖机制效应,在运动期间高频WGA中更明显。