文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

天然低共熔溶剂(NaDES):用于制药及其他领域的绿色溶剂

Natural deep eutectic solvents (NaDES): green solvents for pharmaceutical applications and beyond.

作者信息

Chevé-Kools Emma, Choi Young Hae, Roullier Catherine, Ruprich-Robert Gwenaël, Grougnet Raphaël, Chapeland-Leclerc Florence, Hollmann Frank

机构信息

Cibles Thérapeutiques et Conception de Médicaments (CiTCoM, UMR 8038 CNRS), Faculté de Pharmacie de Paris, Université Paris Cité Paris France

Institut des Substances et Organismes de la Mer (ISOMER, UR 2160), Faculté de Pharmacie de Nantes, Nantes Université France.

出版信息

Green Chem. 2025 Apr 28. doi: 10.1039/d4gc06386d.


DOI:10.1039/d4gc06386d
PMID:40352814
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12062791/
Abstract

Composed of various biosourced metabolites, NaDES offer significant economic, health, and environmental benefits. Their remarkable ability to interact with target compounds through non-covalent bonds enhances their versatility. As solvents, excipients, cofactors, catalysts, solubilisation promoters, stabilisers, and absorption agents, NaDES provide distinct advantages over conventional substances and can even act as active compounds themselves. Furthermore, their role in advancing innovative synthesis and formulation strategies, particularly in nanotechnology and biotechnology, is driving research in these areas. This review is the first to explore all the potential applications of NaDES in the pharmaceutical industry, while taking a comprehensive look at the theory behind them. It gives a precise definition of NaDES and describes their composition, characteristics, molecular interactions, preparation, stability and recovery. It presents detailed applications in pharmaceutical synthesis, extraction and formulation, and discusses roles as active compounds or tools for innovation. Using green metrics, the efficiency of routes including NaDES is compared to that of conventional processes. Lastly, this review addresses often overlooked points such as toxicity and process limitations.

摘要

天然深共熔溶剂(NaDES)由各种生物源代谢物组成,具有显著的经济、健康和环境效益。它们通过非共价键与目标化合物相互作用的卓越能力增强了其通用性。作为溶剂、辅料、辅因子、催化剂、增溶剂、稳定剂和吸收剂,NaDES相对于传统物质具有明显优势,甚至自身也可作为活性化合物。此外,它们在推进创新合成和制剂策略方面的作用,特别是在纳米技术和生物技术领域,正在推动这些领域的研究。本综述首次探讨了NaDES在制药行业的所有潜在应用,同时全面审视了其背后的理论。它给出了NaDES的精确定义,并描述了它们的组成、特性、分子相互作用、制备、稳定性和回收。它介绍了在药物合成、提取和制剂方面的详细应用,并讨论了其作为活性化合物或创新工具的作用。使用绿色指标,将包括NaDES在内的路线效率与传统工艺的效率进行了比较。最后,本综述讨论了毒性和工艺限制等经常被忽视的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/5a4ab8285afc/d4gc06386d-p5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/f8dd7c95363d/d4gc06386d-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/a94ea895182c/d4gc06386d-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/d088d413b305/d4gc06386d-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/15530c9a3d14/d4gc06386d-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/aa15ebddcf4c/d4gc06386d-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/86827b1bc5a0/d4gc06386d-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/7022727d5bad/d4gc06386d-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/d88c92c8186b/d4gc06386d-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/e75a66590778/d4gc06386d-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/aa6e0f2527b5/d4gc06386d-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/0d11ecb3f10e/d4gc06386d-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/adc2570f6ebb/d4gc06386d-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/760cc8741279/d4gc06386d-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/f9a7092a4a74/d4gc06386d-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/6ecdc8efe08f/d4gc06386d-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/3d36b9b2af1a/d4gc06386d-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/13a63dc1ed9a/d4gc06386d-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/4009e551cfd5/d4gc06386d-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/18dd6b96c025/d4gc06386d-f19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/6dcd86770a68/d4gc06386d-f20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/a29204cb6b24/d4gc06386d-f21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/a2932dfc1861/d4gc06386d-f22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/ebd5df1f56a1/d4gc06386d-f23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/1235b9ee0fed/d4gc06386d-f24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/8ea7f501d32d/d4gc06386d-f25.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/ad3a703ad9c8/d4gc06386d-f26.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/e97f90829f8d/d4gc06386d-f27.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/69acc0694010/d4gc06386d-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/f684f3b051fd/d4gc06386d-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/ae38889a05f4/d4gc06386d-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/4389697121f6/d4gc06386d-p4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/5a4ab8285afc/d4gc06386d-p5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/f8dd7c95363d/d4gc06386d-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/a94ea895182c/d4gc06386d-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/d088d413b305/d4gc06386d-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/15530c9a3d14/d4gc06386d-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/aa15ebddcf4c/d4gc06386d-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/86827b1bc5a0/d4gc06386d-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/7022727d5bad/d4gc06386d-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/d88c92c8186b/d4gc06386d-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/e75a66590778/d4gc06386d-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/aa6e0f2527b5/d4gc06386d-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/0d11ecb3f10e/d4gc06386d-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/adc2570f6ebb/d4gc06386d-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/760cc8741279/d4gc06386d-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/f9a7092a4a74/d4gc06386d-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/6ecdc8efe08f/d4gc06386d-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/3d36b9b2af1a/d4gc06386d-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/13a63dc1ed9a/d4gc06386d-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/4009e551cfd5/d4gc06386d-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/18dd6b96c025/d4gc06386d-f19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/6dcd86770a68/d4gc06386d-f20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/a29204cb6b24/d4gc06386d-f21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/a2932dfc1861/d4gc06386d-f22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/ebd5df1f56a1/d4gc06386d-f23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/1235b9ee0fed/d4gc06386d-f24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/8ea7f501d32d/d4gc06386d-f25.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/ad3a703ad9c8/d4gc06386d-f26.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/e97f90829f8d/d4gc06386d-f27.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/69acc0694010/d4gc06386d-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/f684f3b051fd/d4gc06386d-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/ae38889a05f4/d4gc06386d-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/4389697121f6/d4gc06386d-p4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4811/12062791/5a4ab8285afc/d4gc06386d-p5.jpg

相似文献

[1]
Natural deep eutectic solvents (NaDES): green solvents for pharmaceutical applications and beyond.

Green Chem. 2025-4-28

[2]
Green Approaches for Preparation of Natural Deep Eutectic Solvents for Determination of As, Cd, and Pb in Plant Samples by ICP-MS.

ACS Omega. 2025-6-11

[3]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[4]
Survivor, family and professional experiences of psychosocial interventions for sexual abuse and violence: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2022-10-4

[5]
How lived experiences of illness trajectories, burdens of treatment, and social inequalities shape service user and caregiver participation in health and social care: a theory-informed qualitative evidence synthesis.

Health Soc Care Deliv Res. 2025-6

[6]
Ecotoxicological assessment of different choline chloride-based natural deep eutectic solvents: in vitro and in vivo approaches.

Environ Res. 2025-6-21

[7]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2020-1-9

[8]
Autistic Students' Experiences of Employment and Employability Support while Studying at a UK University.

Autism Adulthood. 2025-4-3

[9]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[10]
Eutectic solutions for healing: a comprehensive review on therapeutic deep eutectic solvents (TheDES).

Drug Dev Ind Pharm. 2024-5

引用本文的文献

[1]
Sugar Esters of Fatty Acids: Chemo-Enzymatic Synthesis and Biological Activity.

Molecules. 2025-7-25

[2]
Microwave-Ultrasound-Assisted Extraction Coupled with Natural Deep Eutectic Solvent Enables High-Yield, Low-Solvent Recovery of Curcumin from L.

Pharmaceutics. 2025-6-24

本文引用的文献

[1]
An Overview on the Role of Ionic Liquids and Deep Eutectic Solvents in Oral Pharmaceuticals.

Pharmaceutics. 2025-2-25

[2]
Redox Biocatalysis in Lidocaine-Based Hydrophobic Deep Eutectic Solvents: Non-Conventional Media Outperform Aqueous Conditions.

ChemSusChem. 2025-3-15

[3]
Applications of therapeutic deep eutectic solvents (THEDESs) as antimicrobial and anticancer agents.

Pharm Dev Technol. 2024-12

[4]
Pharmaceutical applications of therapeutic deep eutectic systems (THEDES) in maximising drug delivery.

Heliyon. 2024-4-17

[5]
Eutectic solutions for healing: a comprehensive review on therapeutic deep eutectic solvents (TheDES).

Drug Dev Ind Pharm. 2024-5

[6]
Can (Natural) deep eutectic systems increase the efficacy of ocular therapeutics?

Eur J Pharm Biopharm. 2024-5

[7]
NaDES Application in Cosmetic and Pharmaceutical Fields: An Overview.

Gels. 2024-1-28

[8]
Enhancing the solubility and emulsion properties of rice protein by deamidation of citric acid-based natural deep eutectic solvents.

Food Res Int. 2024-1

[9]
Deep Eutectic Solvents: An Eco-friendly Design for Drug Engineering.

ChemSusChem. 2023-10-20

[10]
Biobased natural deep eutectic system as versatile solvents: Structure, interaction and advanced applications.

Sci Total Environ. 2023-7-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索