Clementz Brett A, Chattopadhyay Ishanu, Kristian Hill S, McDowell Jennifer E, Keedy Sarah K, Parker David A, Trotti Rebekah L, Ivleva Elena I, Keshavan Matcheri S, Gershon Elliot S, Pearlson Godfrey D, Tamminga Carol A, Gibbons Robert D
Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, United States.
Department of Medicine, Section of Hospital Medicine, University of Chicago, Chicago IL, United States.
Biomark Neuropsychiatry. 2025 Jun;12. doi: 10.1016/j.bionps.2024.100117. Epub 2024 Dec 24.
The B-SNIP consortium validated neurobiologically defined psychosis Biotypes (BT1, BT2, BT3) using cognitive and psychophysiological measures. B-SNIP's biomarker panel is not practical for most settings. Previously, B-SNIP developed an efficient classifier of Biotypes using only clinical assessments (called ADEPT-CLIN) with acceptable accuracy (~.81). Adding cognitive performance may improve ADEPT's performance.
Clinical assessments from ADEPT-CLIN plus 18 cognitive measures from 1907 individuals with a B-SNIP psychosis Biotype were used to create an additional diagnostic algorithm called ADEPT-COG. Extremely randomized trees were used to create this low burden classifier.
Total Biotype classification accuracy peaked at 94.6 % with 65 items. A reduced set of 18 items showed 90.5 % accuracy. Only 9-10 items achieved a one-vs-all (e.g., BT1 or not) accuracy of ~.95, considerably better than using clinical assessments alone. The top discriminators of psychosis Biotypes were antisaccade proportion correct, BACS total, symbol coding, antisaccade correct response latency, verbal memory, digit sequencing, stop signal reaction times, stop signal proportion correct, Tower of London, and WRAT Reading. Except for anti-saccade proportion correct and Tower of London, there was no overlap of the top discriminating items for B-SNIP Biotypes and DSM psychosis categories.
This low-burden algorithm using clinical and cognitive measures achieved high classification accuracy and can support Biotype-specific etiological and treatment investigations in clinical and research environments. It may be especially useful for clinical trials.
B-SNIP联盟使用认知和心理生理测量方法对神经生物学定义的精神病生物型(BT1、BT2、BT3)进行了验证。B-SNIP的生物标志物组合对大多数情况而言并不实用。此前,B-SNIP仅使用临床评估(称为ADEPT-CLIN)开发了一种生物型高效分类器,其准确率尚可(约为0.81)。加入认知表现可能会提高ADEPT的性能。
使用来自ADEPT-CLIN的临床评估以及1907名患有B-SNIP精神病生物型个体的18项认知测量指标,创建了另一种诊断算法,称为ADEPT-COG。使用极端随机树来创建这个低负担分类器。
生物型总分类准确率在纳入65个项目时达到峰值,为94.6%。一组精简至18个项目的分类准确率为90.5%。仅9至10个项目实现了约0.95的一对一(例如,BT1与否)准确率,大大优于仅使用临床评估的情况。精神病生物型的主要判别指标包括正确的反扫视比例、BACS总分、符号编码、反扫视正确反应潜伏期、言语记忆、数字序列、停止信号反应时间、停止信号正确比例、伦敦塔测验和WRAT阅读测验。除了正确的反扫视比例和伦敦塔测验外,B-SNIP生物型和DSM精神病类别之间的主要判别项目没有重叠。
这种使用临床和认知测量指标的低负担算法实现了高分类准确率,可支持临床和研究环境中针对生物型特异性的病因和治疗研究。它可能对临床试验特别有用。