Suppr超能文献

大脑动力学的低维嵌入可提高中风的诊断准确性和行为预测能力。

A low dimensional embedding of brain dynamics enhances diagnostic accuracy and behavioral prediction in stroke.

机构信息

Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005, Barcelona, Catalonia, Spain.

Padova Neuroscience Center (PNC), University of Padova, via Orus 2/B, 35129, Padua, Italy.

出版信息

Sci Rep. 2023 Sep 21;13(1):15698. doi: 10.1038/s41598-023-42533-z.

Abstract

Large-scale brain networks reveal structural connections as well as functional synchronization between distinct regions of the brain. The latter, referred to as functional connectivity (FC), can be derived from neuroimaging techniques such as functional magnetic resonance imaging (fMRI). FC studies have shown that brain networks are severely disrupted by stroke. However, since FC data are usually large and high-dimensional, extracting clinically useful information from this vast amount of data is still a great challenge, and our understanding of the functional consequences of stroke remains limited. Here, we propose a dimensionality reduction approach to simplify the analysis of this complex neural data. By using autoencoders, we find a low-dimensional representation encoding the fMRI data which preserves the typical FC anomalies known to be present in stroke patients. By employing the latent representations emerging from the autoencoders, we enhanced patients' diagnostics and severity classification. Furthermore, we showed how low-dimensional representation increased the accuracy of recovery prediction.

摘要

大规模脑网络揭示了大脑不同区域之间的结构连接和功能同步。后者被称为功能连接(FC),可以通过神经影像学技术如功能磁共振成像(fMRI)来获得。FC 研究表明,脑网络在中风后受到严重破坏。然而,由于 FC 数据通常很大且具有高维性,因此从大量数据中提取临床有用的信息仍然是一个巨大的挑战,我们对中风的功能后果的理解仍然有限。在这里,我们提出了一种降维方法来简化对这种复杂神经数据的分析。通过使用自动编码器,我们找到了一种低维表示,它对 fMRI 数据进行编码,保留了已知存在于中风患者中的典型 FC 异常。通过使用自动编码器中出现的潜在表示,我们增强了患者的诊断和严重程度分类。此外,我们展示了低维表示如何提高恢复预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1a9/10514061/f81ad385a6f0/41598_2023_42533_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验