Suppr超能文献

内在节奏:对篮球比赛节奏的动态探索与分析

Inner pace: A dynamic exploration and analysis of basketball game pace.

作者信息

Zhang Fei, Yi Qing, Dong Rui, Yan Jin, Xu Xiao

机构信息

Hangzhou Normal University, Hangzhou, Zhejiang, China.

College of Physical Education, Dalian University, Dalian, Liaoning, China.

出版信息

PLoS One. 2025 May 12;20(5):e0320284. doi: 10.1371/journal.pone.0320284. eCollection 2025.

Abstract

This study aims to investigate the dynamics of basketball game pace and its influence on game outcomes through a novel intra-game segmentation approach. By employing K-means clustering on possession duration, we categorized possessions from 1,141 NBA games in the 2019-2020 season into high-frequency (HFS), low-frequency (LFS), and normal-frequency segments (NFS). A sliding window method was utilized to identify these segments, revealing distinct temporal patterns within games. To analyze the predictive value of these segments, we applied machine learning models, including Random Forest and Light Gradient Boosting Machine (LightGBM), complemented by SHapley Additive exPlanations (SHAP) for interpretability. Our findings demonstrate that HFS segments increase toward the end of each quarter, driven by rapid transitions and tactical urgency, whereas LFS segments dominate the middle phases, reflecting strategic tempo control. NFS accounts for the majority of game time but decreases as the game progresses. The LightGBM analysis highlighted the importance ranking of key performance indicators (KPIs) across different segments and revealed differences in the importance of these indicators within each segment. Compared to traditional methods, our approach provides a finer-grained analysis of game pace dynamics and offers actionable insights for optimizing coaching strategies. This study not only advances the understanding of basketball game rhythm but also establishes a robust framework for integrating machine learning and statistical models in sports analysis.

摘要

本研究旨在通过一种新颖的比赛内分段方法,调查篮球比赛节奏的动态变化及其对比赛结果的影响。通过对控球时长应用K均值聚类算法,我们将2019 - 2020赛季1141场NBA比赛的控球时段分为高频(HFS)、低频(LFS)和中频(NFS)时段。利用滑动窗口法识别这些时段,揭示比赛中不同的时间模式。为了分析这些时段的预测价值,我们应用了机器学习模型,包括随机森林和轻量级梯度提升机(LightGBM),并辅以SHapley加法解释(SHAP)以提高可解释性。我们的研究结果表明,由于快速转换和战术紧迫性,高频时段在每个季度末增加,而低频时段在比赛中期占主导地位,反映了战略节奏控制。中频时段占比赛时间的大部分,但随着比赛进行而减少。LightGBM分析突出了不同时段关键绩效指标(KPI)的重要性排名,并揭示了每个时段内这些指标重要性的差异。与传统方法相比,我们的方法对比赛节奏动态变化提供了更细致的分析,并为优化教练策略提供了可操作的见解。本研究不仅推进了对篮球比赛节奏的理解,还建立了一个强大的框架,用于在体育分析中整合机器学习和统计模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8c6/12068714/178d84feeafe/pone.0320284.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验