Suppr超能文献

非共线反铁磁体MnNiCuN中涨落介导的自旋轨道转矩增强

Fluctuation-Mediated Spin-Orbit Torque Enhancement in the Noncollinear Antiferromagnet MnNiCuN.

作者信息

Bose Arnab, Saunderson Tom G, Shahee Aga, Zhang Lichuan, Hajiri Tetsuya, Rajan Adithya, Kumar Durgesh, Go Dongwook, Asano Hidefumi, Schwingenschlögl Udo, Manchon Aurelien, Mokrousov Yuriy, Kläui Mathias

机构信息

Institute of Physics, Johannes Gutenberg-University Mainz, Staudingerweg 7, Mainz 55128, Germany.

Department of Electrical Engineering, Indian Institute of Technology, Kanpur 201086, UP, India.

出版信息

Nano Lett. 2025 May 21;25(20):8073-8079. doi: 10.1021/acs.nanolett.4c05423. Epub 2025 May 12.

Abstract

We report strong spin-orbit torques (SOTs) generated by noncollinear antiferromagnets MnNiCuN, over a wide temperature range. The SOT efficiency peaks up to 0.3 at the Néel temperature (), substantially higher than that of commonly studied nonmagnets, such as Pt. The sign and magnitude of the SOTs measured in our experiments are corroborated by density functional theory, confirming the dominance of the orbital Hall effect over the spin Hall effect in the nonmagnetic phase above . In contrast, the strong temperature-dependent SOTs observed around and below can be explained by recently developed mechanisms involving chirality-induced and extrinsic scattering-driven spin and orbital currents, considering the effect of spin fluctuations at finite temperatures. Our work not only reports a large magnitude of SOT but also sheds light on a new possible origin where orbital currents can be harnessed by leveraging the chirality of noncollinear antiferromagnets, which holds promise for magnetic memory applications.

摘要

我们报道了非共线反铁磁体MnNiCuN在很宽的温度范围内产生的强自旋轨道矩(SOTs)。在奈尔温度()下,SOT效率峰值高达0.3,大大高于常用的非磁体(如Pt)。我们实验中测量的SOTs的符号和大小得到了密度泛函理论的证实,这证实了在高于的非磁性相中,轨道霍尔效应比自旋霍尔效应占主导地位。相比之下,在及以下观察到的强烈温度依赖的SOTs可以用最近发展的机制来解释,这些机制涉及手性诱导和外在散射驱动的自旋和轨道电流,并考虑了有限温度下自旋涨落的影响。我们的工作不仅报道了大的SOT大小,还揭示了一个新的可能来源,即通过利用非共线反铁磁体的手性来利用轨道电流,这为磁存储应用带来了希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e14/12100721/0627dbd39112/nl4c05423_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验