Huang Jia-Yi, Zhang Xiang-Da, Yang Han, Liu Qian-Wen, Yuan Wei-Wen, Lai Wen-Chuan, Gu Zhi-Yuan
Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Chemistry. 2025 Jun 23;31(35):e202500744. doi: 10.1002/chem.202500744. Epub 2025 May 20.
The electrochemical CO reduction reaction (CORR) to produce hydrocarbon fuels, such as methane (CH), offers a promising pathway to address the dual challenges of climate change and energy shortage. Although copper-based metal-organic frameworks (Cu-MOFs) have proven to be promising CORR catalysts for hydrocarbon production, their uncontrollable structural reconstruction under operating conditions leads to elusive active sites. Herein, we demonstrate that a pulsed potential electrolysis strategy with well-designed pulse parameters can steer the dynamic reconstruction of Cu-MOFs to customize the active sites to enable the CH formation pathway. Mechanistic studies using electron microscopic and spectroscopic methods indicated that constant-potential electrolysis caused the rapid reduction of Cu-MOF to metallic Cu nanoparticles, whereas pulsed electrolysis enabled the controlled generation of active CuO/CuO nanoclusters. Benefiting from this, the pulsed system delivers an exceptional Faradaic efficiency (FE) of 82.9% in CH production from the CORR. This selectivity markedly surpasses that of the constant-potential counterpart, representing the state-of-the-art. In addition, this approach facilitates stable CH production for over 12 hours while maintaining an FE above 60%.
通过电化学CO还原反应(CORR)生产碳氢化合物燃料,如甲烷(CH₄),为应对气候变化和能源短缺这两大挑战提供了一条很有前景的途径。尽管铜基金属有机框架(Cu-MOFs)已被证明是用于碳氢化合物生产的很有前景的CORR催化剂,但其在操作条件下不可控的结构重构导致活性位点难以捉摸。在此,我们证明了一种具有精心设计脉冲参数的脉冲电位电解策略可以引导Cu-MOFs的动态重构,以定制活性位点,从而实现CH₄形成途径。使用电子显微镜和光谱方法进行的机理研究表明,恒电位电解导致Cu-MOF迅速还原为金属Cu纳米颗粒,而脉冲电解能够可控地生成活性Cu₂O/CuO纳米团簇。得益于此,脉冲系统在CORR生产CH₄过程中提供了82.9%的优异法拉第效率(FE)。这种选择性明显超过恒电位对应物,代表了目前的最高水平。此外,这种方法有助于稳定生产CH₄超过12小时,同时保持FE高于60%。