Suppr超能文献

一种具有停滞机制的混合草原信息裂变裸算法用于太阳能光伏系统的参数估计

A hybrid Prairie INFO fission naked algorithm with stagnation mechanism for the parametric estimation of solar photovoltaic systems.

作者信息

Sharma Pankaj, Salgotra Rohit, Raju Saravanakumar, Abouhawwash Mohamed, Askar S S

机构信息

School of Electrical Engineering, Vellore Institute of Technology, Vellore, India.

Faculty of Physics and Applied Computer Science, AGH University of Kraków, Kraków, Poland.

出版信息

Sci Rep. 2025 Feb 1;15(1):4001. doi: 10.1038/s41598-024-61434-3.

Abstract

This paper presents a study to enhance the performance of a recently introduced naked mole-rat algorithm (NMRA), by local optima avoidance, and better exploration as well as exploitation properties. A new set of algorithms, namely Prairie dog optimization algorithm, INFO, and Fission fusion optimization algorithm (FuFiO) are included in the fundamental framework of NMRA to enhance the exploration operation. The proposed algorithm is a hybrid algorithm based on four algorithms: Prairie Dog, INFO, Fission Fusion and Naked mole-rat (PIFN) algorithm. Five new mutation operators/inertia weights are exploited to make the algorithm self-adaptive in nature. Apart from that, a new stagnation phase is added for local optima avoidance. The proposed algorithm is tested for variable population, dimension size, and efficient set of parameters is analysed to make the algorithm self-adaptive in nature. Friedman as well as Wilcoxon rank-sum tests are performed to determine the effectiveness of the PIFN algorithm. On the basis of a comparison of outcomes, the PIFN algorithm is more effective and robust than the other optimization techniques evaluated by prior researchers to address standard benchmark functions (classical benchmarks, CEC 2017, and CEC-2019) and complex engineering design challenges. Furthermore, the effectiveness as well as reliability of the PIFN algorithm is demonstrated by testing using various PV modules, namely the RTC France Solar Cell (SDM, and DDM), Photowatt-PWP201, STM6- 40/36, and STP6-120/36 module. The results obtained from the PIFN algorithm are compared with various MH algorithms reported in the existing literature. The PIFN algorithm achieved the lowest root-mean-square error value, for RTC France Solar Cell (SDM) is 7.72E-04, RTC France Solar Cell (DDM) is 7.59E-04, STP6-120/36 module is 1.44E-02, STM6-40/36 module is 1.723E-03, and Photowatt-PWP201 module is 2.06E-03, respectively. In order to enhance the accuracy of the obtained results of parameter estimation of solar photovoltaic systems, we integrated the Newton-Raphson approach with the PIFN algorithm. Experimental and statistical results further prove the significance of the PIFN algorithm with respect to other algorithms.

摘要

本文提出了一项研究,旨在通过避免局部最优以及更好地实现探索和利用特性来提高最近提出的裸鼹鼠算法(NMRA)的性能。一组新的算法,即草原犬鼠优化算法、INFO算法和裂变融合优化算法(FuFiO)被纳入NMRA的基本框架,以增强探索操作。所提出的算法是一种基于四种算法的混合算法:草原犬鼠算法、INFO算法、裂变融合算法和裸鼹鼠算法(PIFN)。利用五个新的变异算子/惯性权重使算法具有自适应特性。除此之外,还添加了一个新的停滞阶段以避免局部最优。对所提出的算法进行了可变种群、维度大小的测试,并分析了一组有效的参数以使算法具有自适应特性。进行了Friedman检验以及Wilcoxon秩和检验以确定PIFN算法的有效性。基于结果比较,PIFN算法比先前研究人员评估的其他优化技术更有效、更稳健,能够解决标准基准函数(经典基准、CEC 2017和CEC - 2019)以及复杂的工程设计挑战。此外,通过使用各种光伏模块进行测试,即法国RTC太阳能电池(SDM和DDM)、Photowatt - PWP201、STM6 - 40/36和STP6 - 120/36模块,证明了PIFN算法的有效性和可靠性。将从PIFN算法获得的结果与现有文献中报道的各种MH算法进行了比较。PIFN算法实现了最低的均方根误差值,法国RTC太阳能电池(SDM)为7.72E - 04,法国RTC太阳能电池(DDM)为7.59E - 04,STP6 - 120/36模块为1.44E - 02,STM6 - 40/36模块为1.723E - 03,Photowatt - PWP201模块为2.06E - 03。为了提高太阳能光伏系统参数估计结果的准确性,我们将牛顿 - 拉夫逊方法与PIFN算法相结合。实验和统计结果进一步证明了PIFN算法相对于其他算法的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48cb/11787362/3dff89b2f446/41598_2024_61434_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验