Suppr超能文献

深度学习在急性缺血性卒中患者血管内血栓切除术后出血转化与造影剂积聚鉴别诊断中的有效性

The Effectiveness of Deep Learning in the Differential Diagnosis of Hemorrhagic Transformation and Contrast Accumulation After Endovascular Thrombectomy in Acute Ischemic Stroke Patients.

作者信息

Beyazal Mehmet, Solak Merve, Tören Murat, Asan Berkutay, Kaba Esat, Çeliker Fatma Beyazal

机构信息

Department of Radiology, Recep Tayyip Erdogan University, Rize 53100, Turkey.

Department of Electrical and Electronics Engineering, Recep Tayyip Erdogan University, Rize 53100, Turkey.

出版信息

Diagnostics (Basel). 2025 Apr 24;15(9):1080. doi: 10.3390/diagnostics15091080.

Abstract

: Differentiation of hyperdense areas on non-contrast computed tomography (NCCT) images as hemorrhagic transformation (HT) and contrast accumulation (CA) after endovascular thrombectomy (EVT) in acute ischemic stroke (AIS) patients are critical for early antiplatelet and anticoagulant therapy. This study aimed to predict HT and CA on initial NCCT using deep learning. : This study was conducted between January and December 2024. The study included 556 images of 52 patients (21 female and 31 male) who underwent EVT due to AIS, with hyperdense areas observed in the NCCT examination within the first 24 h post-EVT. The evaluated images were labeled as 'contrast accumulation' and 'hemorrhagic transformation'. These labeled images were trained with nine different models under a convolutional neural network (CNN) architecture using a large dataset, such as ImageNet. These models are DenseNet201, InceptionResNet, InceptionV3, NASNetLarge, ResNet50, ResNet101, VGG16, VGG19 and Xception. After training the CNN models, their performance was evaluated using accuracy, loss, validation accuracy, validation loss, F1 score, Receiver Operating Characteristic (ROC) Curve, confusion matrix, confidence interval, and -value analysis. : The models trained in the study were derived from 556 images in data sets obtained from 52 patients; 186 images in training data for CA and 186 images training data for HT (with an increase to 558 images), 115 images used for validation data, and 69 images were compared using test data. In the test set, the Area Under the Curve (AUC) metrics showing sensitivity and specificity values under different cutoff points for the models were as follows: DenseNet201 model AUC = 0.95, InceptionV3 model AUC = 0.93, NasNetLarge model AUC = 0.89, Xception model AUC = 0.91, Inception_ResNet model AUC = 0.84, Resnet50 and Resnet101 models AUC = 0.74. The InceptionV3 model demonstrates the best performance with an F1 score of 0.85. Recall scores generally ranged between 0.62 and 0.85. : In our study, hyperdensity areas in initial NCCT images obtained after EVT in AIS patients were successfully differentiated from HT and CA with high accuracy using CNN architectures. Our findings may enable the early identification of patients who would benefit from anticoagulation or antiplatelet therapy to prevent re-occlusion or progression after EVT.

摘要

在急性缺血性卒中(AIS)患者中,非增强计算机断层扫描(NCCT)图像上高密度区域区分为血管内血栓切除术(EVT)后出血转化(HT)和造影剂积聚(CA),对于早期抗血小板和抗凝治疗至关重要。本研究旨在使用深度学习预测初始NCCT上的HT和CA。 :本研究于2024年1月至12月进行。该研究纳入了52例因AIS接受EVT的患者(21例女性和31例男性)的556张图像,在EVT后24小时内的NCCT检查中观察到高密度区域。评估的图像被标记为“造影剂积聚”和“出血转化”。这些标记图像在卷积神经网络(CNN)架构下使用诸如ImageNet等大型数据集,用九个不同模型进行训练。这些模型是DenseNet201、InceptionResNet、InceptionV3、NASNetLarge、ResNet50、ResNet101、VGG16、VGG19和Xception。对CNN模型进行训练后,使用准确率、损失、验证准确率、验证损失、F1分数、受试者工作特征(ROC)曲线、混淆矩阵、置信区间和P值分析来评估其性能。 :本研究中训练的模型源自52例患者数据集中的556张图像;CA训练数据中有186张图像,HT训练数据中有186张图像(增加到558张图像),115张图像用于验证数据,69张图像用于测试数据比较。在测试集中,模型在不同截止点下显示敏感性和特异性值的曲线下面积(AUC)指标如下:DenseNet201模型AUC = 0.95,InceptionV3模型AUC = 0.93,NasNetLarge模型AUC = 0.89,Xception模型AUC = 0.91,Inception_ResNet模型AUC = 0.84,Resnet50和Resnet101模型AUC = 0.74。InceptionV3模型表现最佳,F1分数为0.85。召回分数一般在0.62至0.85之间。 :在我们的研究中,使用CNN架构成功地将AIS患者EVT后获得的初始NCCT图像中的高密度区域与HT和CA进行了高精度区分。我们的研究结果可能有助于早期识别那些将从抗凝或抗血小板治疗中受益的患者,以预防EVT后再闭塞或病情进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/12071969/21508fdddf6e/diagnostics-15-01080-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验