Suppr超能文献

基于数据驱动的激光粉末床熔融增材制造中球化水平的预测与优化

Data-Driven Based Prediction and Optimization of Balling Levels in Laser Powder Bed Fusion Additive Manufacturing.

作者信息

Qiu He, Jiang Guo-Zhang, Lin Xin

机构信息

Precision Manufacturing Institute, Wuhan University of Science and Technology, Wuhan 430081, China.

Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China.

出版信息

Materials (Basel). 2025 Apr 25;18(9):1949. doi: 10.3390/ma18091949.

Abstract

Laser powder bed fusion has been demonstrated as a promising additive manufacturing technology due to its unique advantages, such as weight reduction, the ability to produce arbitrarily complex geometries and single-step manufacturing. However, the production quality may deteriorate due to the poor surface quality of deposited layers caused by the occurrence of the balling phenomenon, which hampers its widespread application. In this work, a data-driven framework is proposed to optimize the process parameters of laser powder bed fusion to achieve satisfactory balling levels. The effects of key process parameters on balling levels are also investigated. Specifically, an image segmentation-based method is introduced to quantitatively evaluate the balling levels on the interlayer surfaces of as-built specimens under various process parameter combinations. Considering the limited amount of experimental data, different machine learning models, including polynomial regression, support vector regression, and backpropagation neural networks, are developed to predict the balling levels within a predefined process parameter space. The predicted values from the best-performing model are then used as fitness values of individuals in an improved genetic algorithm to search for globally optimal process parameters. The final validation experiments confirm that the as-built parts fabricated using the optimized process parameters exhibit minimal balling levels, demonstrating the effectiveness and feasibility of the proposed framework for balling level prediction and optimization. This study provides valuable insights and practical guidance for enhancing the quality of specimens produced in the laser powder bed fusion process.

摘要

激光粉末床熔融技术因其独特优势,如减轻重量、能够制造任意复杂几何形状以及一步成型,已被证明是一种很有前景的增材制造技术。然而,由于球化现象的出现导致沉积层表面质量较差,生产质量可能会下降,这阻碍了其广泛应用。在这项工作中,提出了一个数据驱动的框架来优化激光粉末床熔融的工艺参数,以达到令人满意的球化水平。还研究了关键工艺参数对球化水平的影响。具体而言,引入了一种基于图像分割的方法来定量评估在各种工艺参数组合下,增材制造试件层间表面的球化水平。考虑到实验数据量有限,开发了包括多项式回归、支持向量回归和反向传播神经网络在内的不同机器学习模型,以在预定义的工艺参数空间内预测球化水平。然后,将性能最佳模型的预测值用作改进遗传算法中个体的适应度值,以搜索全局最优工艺参数。最终的验证实验证实,使用优化后的工艺参数制造的增材制造零件表现出最小的球化水平,证明了所提出的球化水平预测和优化框架的有效性和可行性。本研究为提高激光粉末床熔融工艺生产的试件质量提供了有价值的见解和实际指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f8/12072657/8334ee662006/materials-18-01949-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验