Suppr超能文献

基于术前钆塞酸二钠增强MRI预测肝细胞癌微血管侵犯:二维、二维扩展和三维深度学习模型预测性能的比较

Prediction of microvascular invasion in hepatocellular carcinoma based on preoperative Gd-EOB-DTPA-enhanced MRI: Comparison of predictive performance among 2D, 2D-expansion and 3D deep learning models.

作者信息

Wang Tao, Li Zhen, Yu Haiyang, Duan Chongfeng, Feng Weihua, Chang Lufan, Yu Jing, Liu Fang, Gao Juan, Zang Yichen, Luo Ziwei, Liu Hao, Zhang Yu, Zhou Xiaoming

机构信息

Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.

School of Medical Imaging, Weifang Medical University, Weifang, Shandong, China.

出版信息

Front Oncol. 2023 Feb 3;13:987781. doi: 10.3389/fonc.2023.987781. eCollection 2023.

Abstract

PURPOSE

To evaluate and compare the predictive performance of different deep learning models using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI in predicting microvascular invasion (MVI) in hepatocellular carcinoma.

METHODS

The data of 233 patients with pathologically confirmed hepatocellular carcinoma (HCC) treated at our hospital from June 2016 to June 2021 were retrospectively analyzed. Three deep learning models were constructed based on three different delineate methods of the region of interest (ROI) using the Darwin Scientific Research Platform (Beijing Yizhun Intelligent Technology Co., Ltd., China). Manual segmentation of ROI was performed on the T1-weighted axial Hepatobiliary phase images. According to the ratio of 7:3, the samples were divided into a training set (N=163) and a validation set (N=70). The receiver operating characteristic (ROC) curve was used to evaluate the predictive performance of three models, and their sensitivity, specificity and accuracy were assessed.

RESULTS

Among 233 HCC patients, 109 were pathologically MVI positive, including 91 men and 18 women, with an average age of 58.20 ± 10.17 years; 124 patients were MVI negative, including 93 men and 31 women, with an average age of 58.26 ± 10.20 years. Among three deep learning models, 2D-expansion-DL model and 3D-DL model showed relatively good performance, the AUC value were 0.70 (P=0.003) (95% CI 0.57-0.82) and 0.72 (P<0.001) (95% CI 0.60-0.84), respectively. In the 2D-expansion-DL model, the accuracy, sensitivity and specificity were 0.7143, 0.739 and 0.688. In the 3D-DL model, the accuracy, sensitivity and specificity were 0.6714, 0.800 and 0.575, respectively. Compared with the 3D-DL model (based on 3D-ResNet), the 2D-DL model is smaller in scale and runs faster. The frames per second (FPS) for the 2D-DL model is 244.7566, which is much larger than that of the 3D-DL model (73.3374).

CONCLUSION

The deep learning model based on Gd-EOB-DTPA-enhanced MRI could preoperatively evaluate MVI in HCC. Considering that the predictive performance of 2D-expansion-DL model was almost the same as the 3D-DL model and the former was relatively easy to implement, we prefer the 2D-expansion-DL model in practical research.

摘要

目的

评估并比较不同深度学习模型利用钆塞酸二钠(Gd-EOB-DTPA)增强磁共振成像(MRI)预测肝细胞癌微血管侵犯(MVI)的性能。

方法

回顾性分析2016年6月至2021年6月在我院接受治疗的233例经病理证实的肝细胞癌(HCC)患者的数据。使用达尔文科研平台(北京依准智能科技有限公司,中国)基于三种不同的感兴趣区域(ROI)勾画方法构建了三个深度学习模型。在T1加权轴位肝胆期图像上进行ROI的手动分割。按照7:3的比例,将样本分为训练集(N = 163)和验证集(N = 70)。采用受试者操作特征(ROC)曲线评估三个模型的预测性能,并评估其敏感性、特异性和准确性。

结果

233例HCC患者中,109例病理MVI阳性,其中男性91例,女性18例,平均年龄58.20±10.17岁;124例MVI阴性,其中男性93例,女性31例,平均年龄58.26±10.20岁。在三个深度学习模型中,二维扩展-DL模型和三维-DL模型表现相对较好,AUC值分别为0.70(P = 0.003)(95%CI 0.57 - 0.82)和0.72(P<0.001)(95%CI 0.60 - 0.84)。在二维扩展-DL模型中,准确性、敏感性和特异性分别为0.7143、0.739和0.688。在三维-DL模型中,准确性、敏感性和特异性分别为0.6714、0.800和0.575。与三维-DL模型(基于3D-ResNet)相比,二维-DL模型规模更小,运行速度更快。二维-DL模型的每秒帧数(FPS)为244.7566,远高于三维-DL模型(73.3374)。

结论

基于Gd-EOB-DTPA增强MRI的深度学习模型可在术前评估HCC中的MVI。考虑到二维扩展-DL模型的预测性能与三维-DL模型相近且前者相对易于实施,在实际研究中我们更倾向于二维扩展-DL模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/091d/9936232/97065a75b39a/fonc-13-987781-g001.jpg

相似文献

2
Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI.
Eur Radiol. 2019 Sep;29(9):4648-4659. doi: 10.1007/s00330-018-5935-8. Epub 2019 Jan 28.
3
Deep learning nomogram based on Gd-EOB-DTPA MRI for predicting early recurrence in hepatocellular carcinoma after hepatectomy.
Eur Radiol. 2023 Jul;33(7):4949-4961. doi: 10.1007/s00330-023-09419-0. Epub 2023 Feb 14.
5
Prediction of microvascular invasion in HCC by a scoring model combining Gd-EOB-DTPA MRI and biochemical indicators.
Eur Radiol. 2022 Jun;32(6):4186-4197. doi: 10.1007/s00330-021-08502-8. Epub 2022 Jan 20.

引用本文的文献

3
Artificial intelligence techniques in liver cancer.
Front Oncol. 2024 Sep 3;14:1415859. doi: 10.3389/fonc.2024.1415859. eCollection 2024.
4
Leveraging radiomics and AI for precision diagnosis and prognostication of liver malignancies.
Front Oncol. 2024 May 8;14:1362737. doi: 10.3389/fonc.2024.1362737. eCollection 2024.
5
Establishment and Validation of the LI-RADS Morphologic Type II Hepatocellular Carcinoma Early Recurrence Risk Scoring System.
J Gastrointest Surg. 2023 Dec;27(12):2787-2796. doi: 10.1007/s11605-023-05873-9. Epub 2023 Nov 6.

本文引用的文献

3
4
Prediction of Microvascular Invasion of Hepatocellular Carcinoma Based on Preoperative Diffusion-Weighted MR Using Deep Learning.
Acad Radiol. 2021 Nov;28 Suppl 1:S118-S127. doi: 10.1016/j.acra.2020.11.014. Epub 2020 Dec 7.
5
Gadoxetic acid-enhanced MR imaging for hepatocellular carcinoma: molecular and genetic background.
Eur Radiol. 2020 Jun;30(6):3438-3447. doi: 10.1007/s00330-020-06687-y. Epub 2020 Feb 16.
7
The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges.
Theranostics. 2019 Feb 12;9(5):1303-1322. doi: 10.7150/thno.30309. eCollection 2019.
9
Lung and Pancreatic Tumor Characterization in the Deep Learning Era: Novel Supervised and Unsupervised Learning Approaches.
IEEE Trans Med Imaging. 2019 Aug;38(8):1777-1787. doi: 10.1109/TMI.2019.2894349. Epub 2019 Jan 23.
10
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验