文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习与分形图像在稀疏视图CT中的应用。

Application of deep learning with fractal images to sparse-view CT.

作者信息

Kawaguchi Ren, Minagawa Tomoya, Hori Kensuke, Hashimoto Takeyuki

机构信息

Department of Graduate School of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka City, Tokyo, 181-8612, Japan.

Department of Radiology, Toho University Ohashi Medical Center, 2-22-36, Ohashi, Meguro-Ku, Tokyo, 153-8514, Japan.

出版信息

Int J Comput Assist Radiol Surg. 2025 May 15. doi: 10.1007/s11548-025-03378-1.


DOI:10.1007/s11548-025-03378-1
PMID:40372595
Abstract

PURPOSE: Deep learning has been widely used in research on sparse-view computed tomography (CT) image reconstruction. While sufficient training data can lead to high accuracy, collecting medical images is often challenging due to legal or ethical concerns, making it necessary to develop methods that perform well with limited data. To address this issue, we explored the use of nonmedical images for pre-training. Therefore, in this study, we investigated whether fractal images could improve the quality of sparse-view CT images, even with a reduced number of medical images. METHODS: Fractal images generated by an iterated function system (IFS) were used for nonmedical images, and medical images were obtained from the CHAOS dataset. Sinograms were then generated using 36 projections in sparse-view and the images were reconstructed by filtered back-projection (FBP). FBPConvNet and WNet (first module: learning fractal images, second module: testing medical images, and third module: learning output) were used as networks. The effectiveness of pre-training was then investigated for each network. The quality of the reconstructed images was evaluated using two indices: structural similarity (SSIM) and peak signal-to-noise ratio (PSNR). RESULTS: The network parameters pre-trained with fractal images showed reduced artifacts compared to the network trained exclusively with medical images, resulting in improved SSIM. WNet outperformed FBPConvNet in terms of PSNR. Pre-training WNet with fractal images produced the best image quality, and the number of medical images required for main-training was reduced from 5000 to 1000 (80% reduction). CONCLUSION: Using fractal images for network training can reduce the number of medical images required for artifact reduction in sparse-view CT. Therefore, fractal images can improve accuracy even with a limited amount of training data in deep learning.

摘要

目的:深度学习已广泛应用于稀疏视图计算机断层扫描(CT)图像重建的研究中。虽然充足的训练数据能带来高精度,但由于法律或伦理问题,收集医学图像往往具有挑战性,因此有必要开发在有限数据下仍能良好运行的方法。为解决这一问题,我们探索了使用非医学图像进行预训练。因此,在本研究中,我们调查了分形图像是否能提高稀疏视图CT图像的质量,即使医学图像数量减少。 方法:由迭代函数系统(IFS)生成的分形图像用作非医学图像,医学图像取自CHAOS数据集。然后使用稀疏视图中的36个投影生成正弦图,并通过滤波反投影(FBP)重建图像。FBPConvNet和WNet(第一个模块:学习分形图像,第二个模块:测试医学图像,第三个模块:学习输出)用作网络。然后研究每个网络预训练的有效性。使用两个指标评估重建图像的质量:结构相似性(SSIM)和峰值信噪比(PSNR)。 结果:与仅使用医学图像训练的网络相比,用分形图像预训练的网络参数显示出伪影减少,从而提高了SSIM。在PSNR方面,WNet优于FBPConvNet。用分形图像预训练WNet产生了最佳图像质量,主训练所需的医学图像数量从5000减少到1000(减少了80%)。 结论:使用分形图像进行网络训练可以减少稀疏视图CT中减少伪影所需的医学图像数量。因此,即使在深度学习中训练数据量有限的情况下,分形图像也可以提高准确性。

相似文献

[1]
Application of deep learning with fractal images to sparse-view CT.

Int J Comput Assist Radiol Surg. 2025-5-15

[2]
Optimization of sparse-view CT reconstruction based on convolutional neural network.

Med Phys. 2025-4

[3]
An attention-based deep convolutional neural network for ultra-sparse-view CT reconstruction.

Comput Biol Med. 2023-7

[4]
Deep convolutional dictionary learning network for sparse view CT reconstruction with a group sparse prior.

Comput Methods Programs Biomed. 2024-2

[5]
CT artifact correction for sparse and truncated projection data using generative adversarial networks.

Med Phys. 2021-2

[6]
Dual-domain sparse-view CT reconstruction with Transformers.

Phys Med. 2022-9

[7]
Deep Learning-Based Multi-View Projection Synthesis Approach for Improving the Quality of Sparse-View CBCT in Image-Guided Radiotherapy.

J Imaging Inform Med. 2025-1-23

[8]
Generative adversarial networks improve interior computed tomography angiography reconstruction.

Biomed Phys Eng Express. 2021-10-29

[9]
MBST-Driven 4D-CBCT reconstruction: Leveraging swin transformer and masking for robust performance.

Comput Methods Programs Biomed. 2025-4

[10]
Deep learning-based projection synthesis for low-dose cone-beam computed tomography imaging in image-guided radiotherapy.

Quant Imaging Med Surg. 2024-1-3

本文引用的文献

[1]
Dual-domain sparse-view CT reconstruction with Transformers.

Phys Med. 2022-9

[2]
Deep learning on image denoising: An overview.

Neural Netw. 2020-8-6

[3]
Pathology Image Analysis Using Segmentation Deep Learning Algorithms.

Am J Pathol. 2019-6-11

[4]
Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network.

IEEE Trans Med Imaging. 2017-12

[5]
Low-dose X-ray CT reconstruction via dictionary learning.

IEEE Trans Med Imaging. 2012-4-20

[6]
Fractal-based description of natural scenes.

IEEE Trans Pattern Anal Mach Intell. 1984-6

[7]
Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT.

Phys Med Biol. 2010-10-20

[8]
Theoretical and Numerical Study of MLEM and OSEM Reconstruction Algorithms for Motion Correction in Emission Tomography.

IEEE Trans Nucl Sci. 2009-10-1

[9]
Computed tomography--an increasing source of radiation exposure.

N Engl J Med. 2007-11-29

[10]
Strategies for CT radiation dose optimization.

Radiology. 2004-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索