Suppr超能文献

用于肾脏病理学全切片成像的多尺度多部位肾微血管结构分割

Multi-scale Multi-site Renal Microvascular Structures Segmentation for Whole Slide Imaging in Renal Pathology.

作者信息

Hu Franklin, Deng Ruining, Bao Shunxing, Yang Haichun, Huo Yuankai

机构信息

Department of Computer Science, Vanderbilt University, Nashville, TN, USA.

Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2024 Feb;12933. Epub 2024 Apr 3.

Abstract

Segmentation of microvascular structures, such as arterioles, venules, and capillaries, from human kidney whole slide images (WSI) has become a focal point in renal pathology. Current manual segmentation techniques are time-consuming and not feasible for large-scale digital pathology images. While deep learning-based methods offer a solution for automatic segmentation, most suffer from a limitation: they are designed for and restricted to training on single-site, single-scale data. In this paper, we present Omni-Seg, a novel single dynamic network method that capitalizes on multi-site, multi-scale training data. Unique to our approach, we utilize partially labeled images, where only one tissue type is labeled per training image, to segment microvascular structures. We train a singular deep network using images from two datasets, HuBMAP and NEPTUNE, across different magnifications (40×, 20×, 10×, and 5×). Experimental results indicate that Omni-Seg outperforms in terms of both the Dice Similarity Coefficient (DSC) and Intersection over Union (IoU). Our proposed method provides renal pathologists with a powerful computational tool for the quantitative analysis of renal microvascular structures.

摘要

从人肾全切片图像(WSI)中分割出微血管结构,如小动脉、小静脉和毛细血管,已成为肾脏病理学的一个焦点。当前的手动分割技术耗时且不适用于大规模数字病理图像。虽然基于深度学习的方法为自动分割提供了一种解决方案,但大多数方法都存在一个局限性:它们是为单站点、单尺度数据训练而设计且受其限制。在本文中,我们提出了Omni-Seg,一种利用多站点、多尺度训练数据的新型单动态网络方法。我们方法的独特之处在于,我们利用部分标记图像,即每个训练图像仅标记一种组织类型,来分割微血管结构。我们使用来自HuBMAP和NEPTUNE两个数据集、不同放大倍数(40倍、20倍、10倍和5倍)的图像训练一个单一的深度网络。实验结果表明,Omni-Seg在骰子相似系数(DSC)和交并比(IoU)方面均表现更优。我们提出的方法为肾脏病理学家提供了一个用于肾脏微血管结构定量分析的强大计算工具。

相似文献

6
MESTrans: Multi-scale embedding spatial transformer for medical image segmentation.MESTrans:用于医学图像分割的多尺度嵌入空间变换器
Comput Methods Programs Biomed. 2023 May;233:107493. doi: 10.1016/j.cmpb.2023.107493. Epub 2023 Mar 17.
10
Boundary-aware glomerulus segmentation: Toward one-to-many stain generalization.边界感知肾小球分割:迈向多染色通用化。
Comput Med Imaging Graph. 2022 Sep;100:102104. doi: 10.1016/j.compmedimag.2022.102104. Epub 2022 Aug 12.

引用本文的文献

1
Leveraging advanced feature extraction for improved kidney biopsy segmentation.利用先进的特征提取技术改进肾活检分割。
Front Med (Lausanne). 2025 Jun 18;12:1591999. doi: 10.3389/fmed.2025.1591999. eCollection 2025.

本文引用的文献

1
AI applications in renal pathology.人工智能在肾病理学中的应用。
Kidney Int. 2021 Jun;99(6):1309-1320. doi: 10.1016/j.kint.2021.01.015. Epub 2021 Feb 10.
4
Segmentation of Glomeruli Within Trichrome Images Using Deep Learning.使用深度学习对三色图像中的肾小球进行分割。
Kidney Int Rep. 2019 Apr 15;4(7):955-962. doi: 10.1016/j.ekir.2019.04.008. eCollection 2019 Jul.
5
Small Vessels, Big Role: Renal Microcirculation and Progression of Renal Injury.小血管,大作用:肾微循环与肾损伤进展
Hypertension. 2017 Apr;69(4):551-563. doi: 10.1161/HYPERTENSIONAHA.116.08319. Epub 2017 Feb 13.
6
The rebirth of interest in renal tubular function.对肾小管功能兴趣的再度兴起。
Am J Physiol Renal Physiol. 2016 Jun 1;310(11):F1351-5. doi: 10.1152/ajprenal.00055.2016. Epub 2016 Mar 2.
8
Renal artery aneurysms. Natural history and prognosis.肾动脉瘤。自然病史与预后。
Ann Surg. 1983 Mar;197(3):348-52. doi: 10.1097/00000658-198303000-00016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验