Hu Franklin, Deng Ruining, Bao Shunxing, Yang Haichun, Huo Yuankai
Department of Computer Science, Vanderbilt University, Nashville, TN, USA.
Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12933. Epub 2024 Apr 3.
Segmentation of microvascular structures, such as arterioles, venules, and capillaries, from human kidney whole slide images (WSI) has become a focal point in renal pathology. Current manual segmentation techniques are time-consuming and not feasible for large-scale digital pathology images. While deep learning-based methods offer a solution for automatic segmentation, most suffer from a limitation: they are designed for and restricted to training on single-site, single-scale data. In this paper, we present Omni-Seg, a novel single dynamic network method that capitalizes on multi-site, multi-scale training data. Unique to our approach, we utilize partially labeled images, where only one tissue type is labeled per training image, to segment microvascular structures. We train a singular deep network using images from two datasets, HuBMAP and NEPTUNE, across different magnifications (40×, 20×, 10×, and 5×). Experimental results indicate that Omni-Seg outperforms in terms of both the Dice Similarity Coefficient (DSC) and Intersection over Union (IoU). Our proposed method provides renal pathologists with a powerful computational tool for the quantitative analysis of renal microvascular structures.
从人肾全切片图像(WSI)中分割出微血管结构,如小动脉、小静脉和毛细血管,已成为肾脏病理学的一个焦点。当前的手动分割技术耗时且不适用于大规模数字病理图像。虽然基于深度学习的方法为自动分割提供了一种解决方案,但大多数方法都存在一个局限性:它们是为单站点、单尺度数据训练而设计且受其限制。在本文中,我们提出了Omni-Seg,一种利用多站点、多尺度训练数据的新型单动态网络方法。我们方法的独特之处在于,我们利用部分标记图像,即每个训练图像仅标记一种组织类型,来分割微血管结构。我们使用来自HuBMAP和NEPTUNE两个数据集、不同放大倍数(40倍、20倍、10倍和5倍)的图像训练一个单一的深度网络。实验结果表明,Omni-Seg在骰子相似系数(DSC)和交并比(IoU)方面均表现更优。我们提出的方法为肾脏病理学家提供了一个用于肾脏微血管结构定量分析的强大计算工具。