使用四阶MGT模型对暴露于可变热负荷的皮肤组织层中的二维生物热机械效应进行研究。

Two-dimensional biothermomechanical effects in a layer of skin tissue exposed to variable thermal loading using a fourth-order MGT model.

作者信息

Megahid Sami F

机构信息

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.

Department of Mathematics, Faculty of Science, New Mansoura University, New Mansoura City, 35712, Egypt.

出版信息

Sci Rep. 2025 May 16;15(1):17023. doi: 10.1038/s41598-025-01745-1.

Abstract

A key consideration in medical procedures like thermal therapy is the danger of thermal harm to skin tissues from exposure to fluctuating thermal loads. To maximize treatment effectiveness while safeguarding healthy tissues, it is crucial to accurately anticipate and manage this damage, especially in hyperthermia therapy. The fourth-order Moore-Gibson-Thompson (4MGT) idea is employed in this study to lay a theoretical foundation for bioheat analysis. The purpose of this work is to clarify how skin tissues respond biothermally to varying thermal loading. The model developed makes it easier to anticipate the thermal reactions that occur in human skin and to estimate the efficiency of biothermal transfer in biological tissues. For the suggested model, a two-dimensional skin layer is utilized. The analytical results for tissue temperature are obtained using the normal mode approach. Both the impact of the duration of heat loading exposure and thermal damage are examined. Furthermore, the accuracy of the suggested model is evaluated by contrasting the obtained analytical results with accepted theories. The findings show that when the thermal relaxation time constant is included, the modified Moore-Gibson-Thomson biothermal model forecasts a decrease in temperature compared to the Pennes model.

摘要

在热疗等医疗程序中,一个关键的考虑因素是暴露于波动的热负荷下对皮肤组织造成热损伤的危险。为了在保护健康组织的同时最大化治疗效果,准确预测和管理这种损伤至关重要,尤其是在热疗中。本研究采用四阶摩尔-吉布森-汤普森(4MGT)理论为生物热分析奠定理论基础。这项工作的目的是阐明皮肤组织如何对变化的热负荷产生生物热响应。所开发的模型使预测人体皮肤中发生的热反应以及估计生物组织中生物热传递的效率变得更加容易。对于所提出的模型,使用了二维皮肤层。采用正常模式方法获得组织温度的分析结果。研究了热负荷暴露持续时间的影响和热损伤。此外,通过将获得的分析结果与公认理论进行对比,评估了所提出模型的准确性。研究结果表明,当纳入热弛豫时间常数时,与彭尼斯模型相比,改进后的摩尔-吉布森-汤姆森生物热模型预测温度会降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/118c/12084341/a25c8118f6a3/41598_2025_1745_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索