State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
Genome Biol. 2022 Mar 14;23(1):78. doi: 10.1186/s13059-022-02646-6.
Paralogs that arise from gene duplications during genome evolution enable genetic redundancy and phenotypic robustness. Variation in the coding or regulatory sequence of paralogous transcriptional regulators diversifies their functions and relationships, which provides developmental robustness against genetic or environmental perturbation. The fate transition of plant shoot stem cells for flowering and reproductive success requires a robust transcriptional control. However, how paralogs function and interact to achieve such robustness is unknown.
Here, we explore the genetic relationship and protein behavior of ALOG family transcriptional factors with diverse transcriptional abundance in shoot meristems. A mutant spectrum covers single and higher-order mutant combinations of five ALOG paralogs and creates a continuum of flowering transition defects, showing gradually enhanced precocious flowering, along with inflorescence simplification from wild-type-like to progressively fewer flowers until solitary flower with sterile floral organs. Therefore, these paralogs play unequal roles and act together to achieve a robust genetic canalization. All five proteins contain prion-like intrinsically disordered regions (IDRs) and undergo phase separation. Accumulated mutations following gene duplications lead to IDR variations among ALOG paralogs, resulting in divergent phase separation and transcriptional regulation capabilities. Remarkably, they retain the ancestral abilities to assemble into a heterotypic condensate that prevents precocious activation of the floral identity gene ANANTHA.
Our study reveals a novel genetic canalization mechanism enabled by heterotypic transcriptional condensates formed by paralogous protein interactions and phase separation, uncovering the molecular link between gene duplication caused IDR variation and robust transcriptional control of stem cell fate transition.
基因在基因组进化过程中发生复制会产生同源基因,从而提供遗传冗余和表型稳健性。同源转录调控因子的编码序列或调控序列的变化会使其功能和关系多样化,从而为植物茎尖分生组织的开花和生殖成功提供了对遗传或环境干扰的稳健转录控制。然而,同源基因如何发挥作用并相互作用以实现这种稳健性尚不清楚。
本文研究了 ALOG 家族转录因子在茎尖分生组织中具有不同转录丰度的遗传关系和蛋白行为。一个包含五个 ALOG 同源基因的单突变和更高阶突变组合的突变体谱,产生了一个连续的开花过渡缺陷,表现为逐渐增强的早熟开花,同时花序简化,从类似于野生型的花序到逐渐减少的花,直到只有不育的花器官的单花。因此,这些同源基因发挥着不平等的作用,并共同作用以实现稳健的遗传调控。所有五个蛋白都含有朊病毒样无规则卷曲结构域(IDR)并发生相分离。基因复制后积累的突变导致 ALOG 同源基因之间的 IDR 变化,从而导致相分离和转录调控能力的差异。值得注意的是,它们保留了形成异质凝聚物的能力,从而阻止了花的身份基因 ANANTHA 的过早激活。
本研究揭示了一种由同源蛋白相互作用和相分离形成的异质转录凝聚物所介导的新的遗传调控机制,揭示了由 IDR 变化引起的基因复制与茎尖分生组织干细胞命运转变的稳健转录调控之间的分子联系。