Suppr超能文献

基于生成式人工智能的护理诊断与文档推荐:利用虚拟患者电子护理记录数据

Generative AI-Based Nursing Diagnosis and Documentation Recommendation Using Virtual Patient Electronic Nursing Record Data.

作者信息

Ju Hongshin, Park Minsul, Jeong Hyeonsil, Lee Youngjin, Kim Hyeoneui, Seong Mihyeon, Lee Dongkyun

机构信息

DKMediInfo, Hwaseong, Korea.

Graduate School of System Health & Engineering, Nursing, Ewha Womans University, Seoul, Korea.

出版信息

Healthc Inform Res. 2025 Apr;31(2):156-165. doi: 10.4258/hir.2025.31.2.156. Epub 2025 Apr 30.

Abstract

OBJECTIVES

Nursing documentation consumes approximately 30% of nurses' professional time, making improvements in efficiency essential for patient safety and workflow optimization. This study compares traditional nursing documentation methods with a generative artificial intelligence (AI)-based system, evaluating its effectiveness in reducing documentation time and ensuring the accuracy of AI-suggested entries. Furthermore, the study aims to assess the system's impact on overall documentation efficiency and quality.

METHODS

Forty nurses with a minimum of 6 months of clinical experience participated. In the pre-assessment phase, they documented a nursing scenario using traditional electronic nursing records (ENRs). In the post-assessment phase, they used the SmartENR AI version, developed with OpenAI's ChatGPT 4.0 API and customized for domestic nursing standards; it supports NANDA, SOAPIE, Focus DAR, and narrative formats. Documentation was evaluated on a 5-point scale for accuracy, comprehensiveness, usability, ease of use, and fluency.

RESULTS

Participants averaged 64 months of clinical experience. Traditional documentation required 467.18 ± 314.77 seconds, whereas AI-assisted documentation took 182.68 ± 99.71 seconds, reducing documentation time by approximately 40%. AI-generated documentation received scores of 3.62 ± 1.29 for accuracy, 4.13 ± 1.07 for comprehensiveness, 3.50 ± 0.93 for usability, 4.80 ± 0.61 for ease of use, and 4.50 ± 0.88 for fluency.

CONCLUSIONS

Generative AI substantially reduces the nursing documentation workload and increases efficiency. Nevertheless, further refinement of AI models is necessary to improve accuracy and ensure seamless integration into clinical practice with minimal manual modifications. This study underscores AI's potential to improve nursing documentation efficiency and accuracy in future clinical settings.

摘要

目的

护理记录占据护士约30%的专业时间,提高效率对于患者安全和工作流程优化至关重要。本研究将传统护理记录方法与基于生成式人工智能(AI)的系统进行比较,评估其在减少记录时间和确保AI建议条目的准确性方面的有效性。此外,该研究旨在评估该系统对整体记录效率和质量的影响。

方法

40名至少有6个月临床经验的护士参与。在预评估阶段,他们使用传统电子护理记录(ENR)记录一个护理场景。在评估后阶段,他们使用了SmartENR AI版本,该版本基于OpenAI的ChatGPT 4.0 API开发并根据国内护理标准定制;它支持NANDA、SOAPIE、聚焦DAR和叙述格式。记录从准确性、全面性、可用性、易用性和流畅性五个方面进行5分制评估。

结果

参与者平均有64个月的临床经验。传统记录需要467.18±314.77秒,而AI辅助记录耗时182.68±99.71秒,记录时间减少了约40%。AI生成的记录在准确性方面得分为3.62±1.29,全面性为4.13±1.07,可用性为3.50±0.93,易用性为4.80±0.61,流畅性为4.50±0.88。

结论

生成式AI大幅减少了护理记录工作量并提高了效率。然而,需要进一步完善AI模型以提高准确性,并确保以最少的人工修改无缝集成到临床实践中。本研究强调了AI在未来临床环境中提高护理记录效率和准确性的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e460/12086439/2c645bc12fab/hir-2025-31-2-156f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验