Suppr超能文献

整合医学中的大语言模型:进展、挑战与机遇

Large Language Models in Integrative Medicine: Progress, Challenges, and Opportunities.

作者信息

Yip Hiu Fung, Li Zeming, Zhang Lu, Lyu Aiping

机构信息

School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.

Institute of Systems Medicine and Health Sciences, Hong Kong Baptist University, Hong Kong, China.

出版信息

J Evid Based Med. 2025 Jun;18(2):e70031. doi: 10.1111/jebm.70031.

Abstract

Integrating Traditional Chinese Medicine (TCM) and Modern Medicine faces significant barriers, including the absence of unified frameworks and standardized diagnostic criteria. While Large Language Models (LLMs) in Medicine hold transformative potential to bridge these gaps, their application in integrative medicine remains underexplored and methodologically fragmented. This review systematically examines LLMs' development, deployment, and challenges in harmonizing Modern and TCM practices while identifying actionable strategies to advance this emerging field. This review aimed to provide insight into the following aspects. First, it summarized the existing LLMs in the General Domain, Modern Medicine, and TCM from the perspective of their model structures, number of parameters and domain-specific training data. We highlighted the limitations of existing LLMs in integrative medicine tasks through benchmark experiments and the unique applications of LLMs in Integrative Medicine. We discussed the challenges during the development and proposed possible solutions to mitigate them. This review synthesizes technical insights with practical clinical considerations, providing a roadmap for leveraging LLMs to bridge TCM's empirical wisdom with modern medical systems. These AI-driven synergies could redefine personalized care, optimize therapeutic outcomes, and establish new standards for holistic healthcare innovation.

摘要

整合中医与现代医学面临重大障碍,包括缺乏统一框架和标准化诊断标准。虽然医学领域的大语言模型具有弥合这些差距的变革潜力,但其在中西医结合医学中的应用仍未得到充分探索,且方法上较为零散。本综述系统地研究了大语言模型在协调现代医学与中医实践方面的发展、应用及挑战,同时确定推动这一新兴领域发展的可行策略。本综述旨在提供以下方面的见解。首先,从模型结构、参数数量和特定领域训练数据的角度,总结通用领域、现代医学和中医领域现有的大语言模型。通过基准实验,我们突出了现有大语言模型在中西医结合医学任务中的局限性以及大语言模型在中西医结合医学中的独特应用。我们讨论了开发过程中面临的挑战,并提出了可能的解决方案以缓解这些挑战。本综述将技术见解与实际临床考量相结合,为利用大语言模型将中医的经验智慧与现代医疗系统相连接提供了路线图。这些由人工智能驱动的协同效应可以重新定义个性化医疗,优化治疗效果,并为整体医疗创新建立新的标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b46f/12086751/bc1f1b87f74d/JEBM-18-0-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验