Nowsherwan Ghazi Aman, Azhar Muhammad, Anwar Nadia, Ahmed Muqarrab, Ali Qasim, Nowsherwan Nadia, Riaz Saira, Naseem Shahzad, Lai Wen-Cheng
Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan.
Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
ACS Omega. 2025 May 5;10(18):18251-18269. doi: 10.1021/acsomega.4c08108. eCollection 2025 May 13.
This research provides valuable insights into the effects of neodymium (Nd) doping on the structural, optical, and electrical properties of zinc oxide (ZnO) thin films coated on an ITO substrate. This study deepened our understanding of the unique characteristics and potential applications of these materials by utilizing comprehensive characterization techniques, including X-ray diffraction (XRD), Atomic Force Microscopy (AFM), UV-vis spectroscopy, and photoluminescence spectroscopy. XRD analysis confirmed the presence of hexagonal crystal structures, whereas AFM imaging revealed a distinctive granular configuration. The results indicated that the grain size of the thin films increased from 35.86 to 46.09 nm with increasing Nd doping concentration, demonstrating a relationship between Nd concentration and microstructure. The optical bandgap ranged from 3.29 to 3.21 eV for pure and doped thin films at different DC sputtering powers, and the electrical resistivity decreased from 1.54 × 10 to 0.26 × 10 Ω·cm with Nd doping, suggesting their potential for optoelectronic applications. The study also presents a numerical analysis of CsBiCuI-based perovskite photovoltaic cells (PPVCs) incorporating Nd-doped ZnO as the electron transport layer (ETL). This research investigates the impact of different Nd doping concentrations (20, 30, and 40 W) on the performance of solar cells by analyzing key metrics.
本研究为钕(Nd)掺杂对涂覆在氧化铟锡(ITO)衬底上的氧化锌(ZnO)薄膜的结构、光学和电学性能的影响提供了有价值的见解。本研究通过利用包括X射线衍射(XRD)、原子力显微镜(AFM)、紫外可见光谱和光致发光光谱在内的综合表征技术,加深了我们对这些材料独特特性和潜在应用的理解。XRD分析证实了六方晶体结构的存在,而AFM成像显示出独特的颗粒状结构。结果表明,随着Nd掺杂浓度的增加,薄膜的晶粒尺寸从35.86 nm增加到46.09 nm,表明Nd浓度与微观结构之间存在关系。在不同的直流溅射功率下,纯薄膜和掺杂薄膜的光学带隙范围为3.29至3.21 eV,并且随着Nd掺杂,电阻率从1.54×10降至0.26×10 Ω·cm,表明它们在光电子应用方面的潜力。该研究还对以掺Nd的ZnO作为电子传输层(ETL)的基于CsBiCuI的钙钛矿光伏电池(PPVC)进行了数值分析。本研究通过分析关键指标,研究了不同Nd掺杂浓度(20、30和40 W)对太阳能电池性能的影响。