Lu Bin, Chen Yan-Rong, Li Rui-Xian, Zhang Ming-Kai, Yan Shao-Zhen, Chen Guan-Qun, Castellanos Francisco Xavier, Thompson Paul M, Lu Jie, Han Ying, Yan Chao-Gan
medRxiv. 2025 May 7:2025.05.06.25326606. doi: 10.1101/2025.05.06.25326606.
Timely intervention for Alzheimer's disease (AD) requires early detection. The development of immunotherapies targeting amyloid-beta and tau underscores the need for accessible, time-efficient biomarkers for early diagnosis. Here, we directly applied our previously developed MRI-based deep learning model for AD to the large Chinese SILCODE cohort (722 participants, 1,105 brain MRI scans). The model - initially trained on North American data - demonstrated robust cross-ethnic generalization, without any retraining or fine-tuning, achieving an AUC of 91.3% in AD classification with a sensitivity of 95.2%. It successfully identified 86.7% of individuals at risk of AD progression more than 5 years in advance. Individuals identified as high-risk exhibited significantly shorter median progression times. By integrating an interpretable deep learning brain risk map approach, we identified AD brain subtypes, including an MCI subtype associated with rapid cognitive decline. The model's risk scores showed significant correlations with cognitive measures and plasma biomarkers, such as tau proteins and neurofilament light chain (NfL). These findings underscore the exceptional generalizability and clinical utility of MRI-based deep learning models, especially in large and diverse populations, offering valuable tools for early therapeutic intervention. The model has been made open-source and deployed to a free online website for AD risk prediction, to assist in early screening and intervention.
对阿尔茨海默病(AD)进行及时干预需要早期检测。针对β-淀粉样蛋白和tau蛋白的免疫疗法的发展凸显了对可获取、省时的早期诊断生物标志物的需求。在此,我们将之前开发的基于MRI的AD深度学习模型直接应用于大型中国SILCODE队列(722名参与者,1105次脑部MRI扫描)。该模型最初基于北美数据进行训练,在未进行任何重新训练或微调的情况下展现出强大的跨种族泛化能力,在AD分类中AUC达到91.3%,灵敏度为95.2%。它成功提前5年以上识别出86.7%有AD进展风险的个体。被确定为高风险的个体表现出显著更短的中位进展时间。通过整合一种可解释的深度学习脑风险图谱方法,我们确定了AD脑亚型,包括一种与快速认知衰退相关的轻度认知障碍(MCI)亚型。该模型的风险评分与认知指标以及血浆生物标志物,如tau蛋白和神经丝轻链(NfL),显示出显著相关性。这些发现强调了基于MRI的深度学习模型具有卓越的泛化能力和临床实用性,尤其是在大型和多样化人群中,为早期治疗干预提供了有价值的工具。该模型已开源并部署到一个免费的在线网站用于AD风险预测,以协助早期筛查和干预。