Suppr超能文献

活性细胞骨架囊泡的黏附。

Adhesion of Active Cytoskeletal Vesicles.

机构信息

Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany; Department of Bionanoscience, Kavli Institute of NanoScience, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands.

Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany; Aix-Marseille Université, CNRS, CINAM, Marseille, France.

出版信息

Biophys J. 2018 Dec 18;115(12):2395-2402. doi: 10.1016/j.bpj.2018.10.013. Epub 2018 Oct 23.

Abstract

Regulation of adhesion is a ubiquitous feature of living cells, observed during processes such as motility, antigen recognition, or rigidity sensing. At the molecular scale, a myriad of mechanisms are necessary to recruit and activate the essential proteins, whereas at the cellular scale, efficient regulation of adhesion relies on the cell's ability to adapt its global shape. To understand the role of shape remodeling during adhesion, we use a synthetic biology approach to design a minimal experimental model, starting with a limited number of building blocks. We assemble cytoskeletal vesicles whose size, reduced volume, and cytoskeletal contractility can be independently tuned. We show that these cytoskeletal vesicles can sustain strong adhesion to solid substrates only if the actin cortex is actively remodeled significantly. When the cytoskeletal vesicles are deformed under hypertonic osmotic pressure, they develop a crumpled geometry with deformations. In the presence of molecular motors, these deformations are dynamic in nature, and the excess membrane area generated thereby can be used to gain adhesion energy. The cytoskeletal vesicles are able to attach to the rigid glass surfaces even under strong adhesive forces just like the cortex-free vesicles. The balance of deformability and adhesion strength is identified to be key to enable cytoskeletal vesicles to adhere to solid substrates.

摘要

黏附的调控是活细胞普遍存在的特征,在运动、抗原识别或刚性感知等过程中都能观察到。在分子水平上,需要许多机制来招募和激活必需的蛋白质,而在细胞水平上,黏附的有效调控依赖于细胞适应其整体形状的能力。为了了解在黏附过程中重塑形状的作用,我们使用合成生物学方法从有限数量的构建块开始设计一个最小的实验模型。我们组装了细胞骨架囊泡,其大小、体积减小和细胞骨架收缩性可以独立调节。我们表明,只有当肌动蛋白皮层被显著地主动重塑时,这些细胞骨架囊泡才能维持与固体基底的强黏附。当细胞骨架囊泡在高渗渗透压下变形时,它们会形成褶皱的几何形状和变形。在分子马达的存在下,这些变形具有动态性质,并且由此产生的额外膜面积可以用来获得黏附能量。即使在强大的黏附力下,细胞骨架囊泡也能够附着在坚硬的玻璃表面上,就像没有皮层的囊泡一样。可变形性和黏附强度之间的平衡被确定为使细胞骨架囊泡能够黏附在固体基底上的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa32/6301914/f4c513b7bec4/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验