Baldi Andrea, Askes Sven H C
Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands.
ACS Catal. 2023 Feb 22;13(5):3419-3432. doi: 10.1021/acscatal.2c05435. eCollection 2023 Mar 3.
Anthropogenic climate change urgently calls for the greening and intensification of the chemical industry. Most chemical reactors make use of catalysts to increase their conversion yields, but their operation at steady-state temperatures limits their rate, selectivity, and energy efficiency. Here, we show how to break such a steady-state paradigm using ultrashort light pulses and photothermal nanoparticle arrays to modulate the temperature of catalytic sites at timescales typical of chemical processes. Using heat dissipation and time-dependent microkinetic modeling for a number of catalytic landscapes, we numerically demonstrate that pulsed photothermal catalysis can result in a favorable, dynamic mode of operation with higher energy efficiency, higher catalyst activity than for any steady-state temperature, reactor operation at room temperature, resilience against catalyst poisons, and access to adsorbed reagent distributions that are normally out of reach. Our work identifies the key experimental parameters controlling reaction rates in pulsed heterogeneous catalysis and provides specific recommendations to explore its potential in real experiments, paving the way to a more energy-efficient and process-intensive operation of catalytic reactors.
人为气候变化迫切要求化学工业实现绿色化和集约化。大多数化学反应器利用催化剂来提高转化率,但它们在稳态温度下运行限制了反应速率、选择性和能源效率。在此,我们展示了如何使用超短光脉冲和光热纳米颗粒阵列在化学过程的典型时间尺度上调节催化位点的温度,从而打破这种稳态模式。通过对多种催化体系进行热耗散和时间相关的微观动力学建模,我们通过数值模拟证明,脉冲光热催化可实现一种有利的动态操作模式,具有更高的能源效率、比任何稳态温度下都更高的催化剂活性、可在室温下进行反应器操作、对催化剂毒物具有抗性,并且能够获得通常难以实现的吸附试剂分布。我们的工作确定了控制脉冲多相催化反应速率的关键实验参数,并提供了在实际实验中探索其潜力的具体建议,为催化反应器更节能和更强化的操作铺平了道路。