Liu Xingji, Ni Yao, Wang Zujun, Wei Sunfu, Chen Xiao En, Lin Jingjie, Liu Lu, Yu Boyang, Yu Yue, Lei Dengyun, Chen Yayi, Zhang Jianfeng, Qi Jing, Zhong Wei, Liu Yuan
School of Integrated Circuits, Guangdong University of Technology, Guangzhou, 510006, China.
National Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an, 710024, China.
Adv Sci (Weinh). 2025 Aug;12(30):e17237. doi: 10.1002/advs.202417237. Epub 2025 May 20.
An asymmetric dual-gate heterointerface-regulated artificial synapse (HRAS) is developed, utilizing a main gate with distinct ion concentrations and a lateral gate to receive synaptic pulses, and through dielectric coupling and ionic effects, formed indium tin zinc oxide (ITZO) dual-interface channels that allow precise control over channel charge, thereby simulating multi-level coordinated actions of dual-neurotransmitters. The lateral modulation of the lateral gate significantly regulates ionic effects, achieving the intricate interplay among lateral inhibition/enhancement and short-/long-term plasticity at a multi-level scale for the first time. This interplay enables the HRAS device to simulate frequency-dependent image filtering and spike number-dependent dynamic visual persistence. By combining temporal synaptic inputs with lateral modulation, HRAS harnesses spatiotemporal properties for bio-inspired cryptographic applications, offering a versatile device-level platform for secure information processing. Furthermore, a novel dual-gate input neural network architecture based on HRAS has been proposed, which aids in weight update and demonstrates enhanced recognition capabilities in neural network tasks, highlighting its role in bio-inspired computing.
开发了一种非对称双栅异质界面调控人工突触(HRAS),它利用具有不同离子浓度的主栅和横向栅来接收突触脉冲,并通过介电耦合和离子效应形成铟锡氧化锌(ITZO)双界面通道,从而实现对通道电荷的精确控制,进而模拟双神经递质的多级协同作用。横向栅的横向调制显著调节离子效应,首次在多级尺度上实现了横向抑制/增强与短期/长期可塑性之间的复杂相互作用。这种相互作用使HRAS器件能够模拟频率依赖性图像滤波和脉冲数依赖性动态视觉暂留。通过将时间突触输入与横向调制相结合,HRAS利用时空特性实现受生物启发的加密应用,为安全信息处理提供了一个通用的器件级平台。此外,还提出了一种基于HRAS的新型双栅输入神经网络架构,该架构有助于权重更新,并在神经网络任务中展示出增强的识别能力,凸显了其在受生物启发计算中的作用。