Suppr超能文献

OrthologAL:一个用于对非人类临床前高维基因表达数据进行质量感知人源化的Shiny应用程序。

OrthologAL: a Shiny application for quality-aware humanization of non-human pre-clinical high-dimensional gene expression data.

作者信息

Chowdary Rishika, Suter Robert K, D'Antuono Matthew, Gomes Cynthia, Stein Joshua, Lee Ki-Bum, Lee Jae K, Ayad Nagi G

机构信息

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, United States.

The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States.

出版信息

Bioinformatics. 2025 Jun 2;41(6). doi: 10.1093/bioinformatics/btaf311.

Abstract

MOTIVATION

Single-cell and spatial transcriptomics provide unprecedented insight into diseases. Pharmacotranscriptomic approaches are powerful tools that leverage gene expression data for drug repurposing and discovery. Multiple databases attempt to connect human cellular transcriptional responses to small molecules for use in transcriptome-based drug discovery efforts. However, preclinical research often requires in vivo experiments in non-human species, which makes utilizing such valuable resources difficult. To facilitate both human orthologous conversion of non-human transcriptomes and the application of pharmacotranscriptomic databases to pre-clinical research models, we introduce OrthologAL. OrthologAL interfaces with BioMart to access different gene sets from the Ensembl database, allowing for ortholog conversion without the need for user-generated code.

RESULTS

Researchers can input their single-cell or other high-dimensional gene expression data from any species as a Seurat object, and OrthologAL will output a human ortholog-converted Seurat object for download and use. To demonstrate the utility of this application, we tested OrthologAL using single-cell, single-nuclei, and spatial transcriptomic data derived from common preclinical models, including patient-derived orthotopic xenografts of medulloblastoma, and mouse and rat models of spinal cord injury. OrthologAL can convert these data types efficiently to that of corresponding orthologs while preserving the dimensional architecture of the original non-human expression data. OrthologAL will be broadly useful for the simple conversion of Seurat objects and for applying preclinical, high-dimensional transcriptomics data to functional human-derived small molecule predictions.

AVAILABILITY AND IMPLEMENTATION

OrthologAL is available for download as an R package with functions to launch the Shiny GUI at https://github.com/AyadLab/OrthologAL or via Zenodo at https://doi.org/10.5281/zenodo.15225041. The medulloblastoma single-cell transcriptomics data were downloaded from the NCBI Gene Expression Omnibus with the identifier GSE129730. 10X Visium data of medulloblastoma PDX mouse models from Vo et al. were acquired by contacting the authors, and the raw data are available from ArrayExpress under the identifier E-MTAB-11720. The single-cell and single-nuclei transcriptomics data of rat and mouse spinal-cord injury were acquired from the Gene Expression Omnibus under the identifiers GSE213240 and GSE234774.

摘要

动机

单细胞和空间转录组学为疾病研究提供了前所未有的见解。药物转录组学方法是利用基因表达数据进行药物再利用和发现的强大工具。多个数据库试图将人类细胞转录反应与小分子联系起来,用于基于转录组的药物发现研究。然而,临床前研究通常需要在非人类物种中进行体内实验,这使得利用这些宝贵资源变得困难。为了促进非人类转录组的人类直系同源转换以及药物转录组学数据库在临床前研究模型中的应用,我们引入了OrthologAL。OrthologAL与BioMart接口,以从Ensembl数据库访问不同的基因集,无需用户生成代码即可进行直系同源转换。

结果

研究人员可以将来自任何物种的单细胞或其他高维基因表达数据作为Seurat对象输入,OrthologAL将输出一个经过人类直系同源转换的Seurat对象以供下载和使用。为了证明该应用程序的实用性,我们使用了来自常见临床前模型的单细胞、单核和空间转录组数据对OrthologAL进行了测试,这些模型包括髓母细胞瘤患者来源的原位异种移植以及脊髓损伤的小鼠和大鼠模型。OrthologAL可以有效地将这些数据类型转换为相应直系同源物的数据类型,同时保留原始非人类表达数据的维度结构。OrthologAL对于Seurat对象的简单转换以及将临床前高维转录组学数据应用于功能性人类衍生小分子预测将具有广泛的用途。

可用性和实现方式

OrthologAL可作为R包下载,其功能可在https://github.com/AyadLab/OrthologAL或通过Zenodo在https://doi.org/10.5281/zenodo.15225041上启动Shiny GUI。髓母细胞瘤单细胞转录组学数据从NCBI基因表达综合数据库下载,标识符为GSE129730。来自Vo等人的髓母细胞瘤PDX小鼠模型的10X Visium数据通过联系作者获得,原始数据可从ArrayExpress获得,标识符为E-MTAB-11720。大鼠和小鼠脊髓损伤的单细胞和单核转录组学数据从基因表达综合数据库获得,标识符分别为GSE213240和GSE234774。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/12158155/4beb53f07c48/btaf311f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验