文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过在基于聚己内酯-纳米羟基磷灰石/海藻酸钠-明胶的3D打印混合支架中持续递送地塞米松来增强间充质干细胞的体外成骨分化,用于骨再生。

Enhancing in vitro osteogenic differentiation of mesenchymal stem cells via sustained dexamethasone delivery in 3D-Printed hybrid scaffolds based on polycaprolactone-nanohydroxyapatite/alginate-gelatin for bone regeneration.

作者信息

Noory Parastoo, Farmani Ahmad Reza, Ai Jafar, Bahrami Naghmeh, Bayat Mohammad, Ebrahimi-Barough Somayeh, Farzin Ali, Shojaie Shima, Hajmoradi Hamed, Mohamadnia Abdolreza, Goodarzi Arash

机构信息

Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.

出版信息

J Biol Eng. 2025 May 20;19(1):48. doi: 10.1186/s13036-025-00514-y.


DOI:10.1186/s13036-025-00514-y
PMID:40394673
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12093820/
Abstract

Despite the natural ability of bone repair, its limitations have led to advanced organic-inorganic-based biomimetic scaffolds and sustained drug release approaches. Particularly, dexamethasone (DEX), a widely used synthetic glucocorticoid, has been shown to increase the expression of bone-related genes during the osteogenesis process. This study aims to develop a hybrid 3D-printed scaffold for controlled delivery of dexamethasone. Hence, hybrid scaffolds were fabricated using a layer-by-layer 3D-printing of combined materials comprising polycaprolactone (PCL)-nanohydroxyapatite (nHA) composite, and DEX-loaded PCL microparticles embedded in the alginate-gelatin hydrogel. Encapsulation efficiency, loading capacity, and in vitro kinetics of DEX release were evaluated. Osteogenic differentiation of human endometrial mesenchymal stem cells (hEnMSCs) on DEX-loaded hybrid scaffolds was assessed by evaluating osteogenic gene expression levels (collagen I, osteonectin, RUNX2), alkaline phosphatase (ALP) activity, and scaffold mineralization. The hybrid scaffolds exhibited favorable morphology, mechanical-properties, biocompatibility, and biodegradability, enhancing osteogenesis of hEnMSCs. DEX-loaded PCL microparticles within hybrid scaffolds exhibited a controlled release pattern and promoted osteogenic differentiation during the sustained release period through a significant increase in osteonectin and COL1A1 expression. Also, increased mineralization was demonstrated by SEM and alizarin red staining. This study proposes that drug-loaded 3D-printed hybrid organic-inorganic nanocomposite scaffolds are promising for advanced bone tissue engineering applications.

摘要

尽管骨修复具有天然能力,但其局限性促使了先进的有机-无机基仿生支架和持续药物释放方法的发展。特别是,地塞米松(DEX)作为一种广泛使用的合成糖皮质激素,已被证明在成骨过程中可增加骨相关基因的表达。本研究旨在开发一种用于地塞米松控释的混合3D打印支架。因此,采用逐层3D打印的方法制备了混合支架,该支架由聚己内酯(PCL)-纳米羟基磷灰石(nHA)复合材料以及嵌入藻酸盐-明胶水凝胶中的载DEX的PCL微粒组成。评估了DEX的包封效率、载药量和体外释放动力学。通过评估成骨基因表达水平(I型胶原蛋白、骨连接蛋白、RUNX2)、碱性磷酸酶(ALP)活性和支架矿化情况,评估了载DEX混合支架上的人子宫内膜间充质干细胞(hEnMSCs)的成骨分化。混合支架表现出良好的形态、力学性能、生物相容性和生物降解性,增强了hEnMSCs的成骨作用。混合支架内载DEX的PCL微粒呈现出控释模式,并在持续释放期间通过显著增加骨连接蛋白和COL1A1的表达促进了成骨分化。此外,扫描电子显微镜和茜素红染色显示矿化增加。本研究表明,载药3D打印混合有机-无机纳米复合支架在先进的骨组织工程应用中具有广阔前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718c/12093820/c30291db73ad/13036_2025_514_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718c/12093820/e7447077e738/13036_2025_514_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718c/12093820/5f72e7d83811/13036_2025_514_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718c/12093820/a10e3ae04bd9/13036_2025_514_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718c/12093820/f456a4607a3d/13036_2025_514_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718c/12093820/058f609c8f85/13036_2025_514_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718c/12093820/d9fe95d51bed/13036_2025_514_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718c/12093820/c30291db73ad/13036_2025_514_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718c/12093820/e7447077e738/13036_2025_514_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718c/12093820/5f72e7d83811/13036_2025_514_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718c/12093820/a10e3ae04bd9/13036_2025_514_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718c/12093820/f456a4607a3d/13036_2025_514_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718c/12093820/058f609c8f85/13036_2025_514_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718c/12093820/d9fe95d51bed/13036_2025_514_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718c/12093820/c30291db73ad/13036_2025_514_Fig7_HTML.jpg

相似文献

[1]
Enhancing in vitro osteogenic differentiation of mesenchymal stem cells via sustained dexamethasone delivery in 3D-Printed hybrid scaffolds based on polycaprolactone-nanohydroxyapatite/alginate-gelatin for bone regeneration.

J Biol Eng. 2025-5-20

[2]
The synergistic effect of nano-hydroxyapatite and dexamethasone in the fibrous delivery system of gelatin and poly(l-lactide) on the osteogenesis of mesenchymal stem cells.

Int J Pharm. 2016-4-20

[3]
Magnesium-oxide-enhanced bone regeneration: 3D-printing of gelatin-coated composite scaffolds with sustained Rosuvastatin release.

Int J Biol Macromol. 2024-5

[4]
Bone Tissue Engineering with Adipose-Derived Stem Cells in Polycaprolactone/Graphene Oxide/Dexamethasone 3D-Printed Scaffolds.

ACS Biomater Sci Eng. 2024-10-14

[5]
Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.

Acta Biomater. 2017-12-12

[6]
Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair.

Tissue Eng Part A. 2022-2

[7]
Sustained BMP-2 delivery via alginate microbeads and polydopamine-coated 3D-Printed PCL/β-TCP scaffold enhances bone regeneration in long bone segmental defects.

J Orthop Translat. 2024-10-2

[8]
Osteoregenerative Potential of 3D-Printed Poly -Caprolactone Tissue Scaffolds In Vitro Using Minimally Manipulative Expansion of Primary Human Bone Marrow Stem Cells.

Int J Mol Sci. 2023-3-3

[9]
3D-printed scaffolds: Incorporating dexamethasone microspheres and BMP2 for enhanced osteogenic differentiation of human mesenchymal stem cells.

Colloids Surf B Biointerfaces. 2025-4-16

[10]
Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair.

Bone. 2022-1

本文引用的文献

[1]
Enhanced Mechanical Properties and Degradation Control of Poly(Lactic) Acid/Hydroxyapatite/Reduced Graphene Oxide Composites for Advanced Bone Tissue Engineering Application.

Biomimetics (Basel). 2024-10-23

[2]
Bone development by Hedgehog and Wnt signaling, Runx2, and Sp7.

J Bone Miner Metab. 2025-1

[3]
Poly(acrylic acid)-Sodium Alginate Superabsorbent Hydrogels Synthesized by Electron-Beam Irradiation-Part II: Swelling Kinetics and Absorption Behavior in Various Swelling Media.

Gels. 2024-9-23

[4]
Recent Advances in 3D Printing of Smart Scaffolds for Bone Tissue Engineering and Regeneration.

Adv Mater. 2024-8

[5]
MicroRNA-200c Release from Gelatin-Coated 3D-Printed PCL Scaffolds Enhances Bone Regeneration.

ACS Biomater Sci Eng. 2024-4-8

[6]
The wound healing effect of polycaprolactone-chitosan scaffold coated with a gel containing Zataria multiflora Boiss. volatile oil nanoemulsions.

BMC Complement Med Ther. 2024-1-25

[7]
Harnessing Natural Polymers for Nano-Scaffolds in Bone Tissue Engineering: A Comprehensive Overview of Bone Disease Treatment.

Curr Issues Mol Biol. 2024-1-5

[8]
Advancements in drug-loaded hydrogel systems for bone defect repair.

Regen Ther. 2023-12-28

[9]
Recent Developments in Layer-by-Layer Assembly for Drug Delivery and Tissue Engineering Applications.

Adv Healthc Mater. 2024-3

[10]
Biomimetic Hydrogels as the Inductive Endochondral Ossification Template for Promoting Bone Regeneration.

Adv Healthc Mater. 2024-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索