Suppr超能文献

基于心电图波形的深度学习对阻塞性稳定型冠状动脉疾病风险进行分层。

Deep learning on electrocardiogram waveforms to stratify risk of obstructive stable coronary artery disease.

作者信息

Trivedi Rishi K, Chiu I Min, Hughes John Weston, Rogers Albert J, Ouyang David

机构信息

Department of Cardiology, Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S San Vicente Boulevard #A3600, Los Angeles, CA, USA.

Division of Cardiology, Department of Medicine, Stanford University, Palo Alto, CA, USA.

出版信息

Eur Heart J Digit Health. 2025 Mar 18;6(3):456-465. doi: 10.1093/ehjdh/ztaf020. eCollection 2025 May.

Abstract

AIMS

Coronary artery disease (CAD) incidence continues to rise with an increasing burden of chronic coronary disease (CCD). Current probability-based risk assessment for obstructive CAD (oCAD) lacks sufficient diagnostic accuracy. We aimed to develop and validate a deep learning (DL) algorithm utilizing electrocardiogram (ECG) waveforms and clinical features to predict oCAD in patients with suspected CCD.

METHODS AND RESULTS

The study includes subjects undergoing invasive angiography for evaluation of CCD over a 4-year period at a quaternary care centre. oCAD was defined as performance of percutaneous coronary intervention (PCI) based on assessment by interventional cardiologists during elective angiography. DL models were developed for ECG waveforms alone (DL-ECG), clinical features from standard risk scores (DL-Clinical), and the combination of ECG waveforms and clinical features (DL-MM); a commonly used pre-test probability estimation tool from the CAD Consortium study was used for comparison (CAD2) [3]. The CAD2 model [AUC 0.733 (0.717-0.750)] had similar performance as the DL-Clinical model [AUC 0.762 (0.746-0.778)]. The DL-ECG model [AUC 0.741 (0.726-0.758)] had similar performance as both the clinical feature models. The DL-MM model [AUC 0.807 (0.793-0.822)] had a superior performance. Validation in an external cohort demonstrated similar performance in the DL-MM [AUC 0.716 (0.707-0.726)] and CAD2 risk score [AUC 0.715 (0.705-0.724)].

CONCLUSION

A multi-modality DL model utilizing ECG waveforms and clinical risk factors can improve prediction of oCAD in CCD compared with risk-factor based models. Prospective research is warranted to determine whether incorporating DL methods in ECG analysis improves diagnosis of oCAD and outcomes in CCD.

摘要

目的

随着慢性冠状动脉疾病(CCD)负担的增加,冠状动脉疾病(CAD)的发病率持续上升。目前基于概率的阻塞性CAD(oCAD)风险评估缺乏足够的诊断准确性。我们旨在开发并验证一种利用心电图(ECG)波形和临床特征来预测疑似CCD患者oCAD的深度学习(DL)算法。

方法与结果

该研究纳入了在一家四级医疗中心接受为期4年的侵入性血管造影以评估CCD的受试者。oCAD被定义为基于介入心脏病学家在择期血管造影期间的评估进行经皮冠状动脉介入治疗(PCI)。单独针对ECG波形(DL-ECG)、标准风险评分的临床特征(DL-临床)以及ECG波形与临床特征的组合(DL-MM)开发了DL模型;使用CAD联盟研究中一种常用的预测试概率估计工具进行比较(CAD2)[3]。CAD2模型[曲线下面积(AUC)0.733(0.717 - 0.750)]与DL-临床模型[AUC 0.762(0.746 - 0.778)]表现相似。DL-ECG模型[AUC 0.741(0.726 - 0.758)]与两个临床特征模型表现相似。DL-MM模型[AUC 0.807(0.793 - 0.822)]具有更优的表现。在外部队列中的验证表明,DL-MM [AUC 0.716(0.707 - 0.726)]和CAD2风险评分[AUC 0.715(0.705 - 0.724)]表现相似。

结论

与基于风险因素的模型相比,利用ECG波形和临床风险因素的多模态DL模型可改善对CCD患者oCAD的预测。有必要进行前瞻性研究以确定将DL方法纳入ECG分析是否能改善oCAD的诊断及CCD的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b5/12088713/9dac538d7cae/ztaf020_ga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验