Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
The Biobank of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
Aging (Albany NY). 2023 May 1;15(9):3524-3537. doi: 10.18632/aging.204688.
Coronary Artery Disease (CAD) is a major cause of morbidity and mortality, yet it is frequently asymptomatic in the early stages and hence goes undetected.
We aimed to develop a novel artificial intelligence-based approach for early detection of CAD patients based solely on electrocardiogram (ECG).
This study included patients with suspected CAD who had standard 10-s resting 12-lead ECGs and coronary computed tomography angiography (cCTA) results within 4 weeks or less. The ECG and cCTA data from the same patient were matched based on their hospitalization or outpatient ID. All matched data pairs were then randomly divided into training, validation dataset for model development based on convolutional neural network (CNN) and test dataset for model evaluation. The accuracy (Acc), specificity (Spec), sensitivity (Sen), positive predictive value (PPV), negative predictive value (NPV) and area under the receiver operating characteristic curve (AUC) of the model were calculated by using the test dataset.
In the test dataset, the model for detecting CAD achieved an AUC of 0.75 (95% CI, 0.73 to 0.78) with an accuracy of 70.0%. Using the optimal cut-off point, the CAD detection model had sensitivity of 68.7%, specificity of 70.9%, positive predictive value (PPV) of 61.2%, and negative predictive value (NPV) of 77.2%. Our study demonstrates that a well-trained CNN model based solely on ECG could be considered an efficient, low-cost, and noninvasive method of assisting in CAD detection.
冠心病(CAD)是发病率和死亡率的主要原因,但在早期阶段通常无症状,因此未被发现。
我们旨在开发一种基于人工智能的新方法,仅基于心电图(ECG)来早期检测 CAD 患者。
本研究纳入了疑似 CAD 患者,他们在 4 周或更短时间内进行了标准的 10 秒静息 12 导联 ECG 和冠状动脉计算机断层扫描血管造影(cCTA)检查。根据患者的住院或门诊 ID 将同一患者的 ECG 和 cCTA 数据进行匹配。然后,将所有匹配的数据对随机分为训练数据集、基于卷积神经网络(CNN)的模型开发验证数据集和模型评估测试数据集。使用测试数据集计算模型的准确性(Acc)、特异性(Spec)、敏感性(Sen)、阳性预测值(PPV)、阴性预测值(NPV)和接收器操作特征曲线(ROC)下的面积(AUC)。
在测试数据集中,用于检测 CAD 的模型的 AUC 为 0.75(95%CI,0.73 至 0.78),准确率为 70.0%。使用最佳截断点,CAD 检测模型的敏感性为 68.7%,特异性为 70.9%,阳性预测值(PPV)为 61.2%,阴性预测值(NPV)为 77.2%。我们的研究表明,基于 ECG 训练有素的 CNN 模型可以被认为是一种有效、低成本、非侵入性的 CAD 检测辅助方法。