Cartwright Elin, Johansson Fredrik O L, Sloboda Tamara, Kammlander Birgit, Lindblad Andreas, Cappel Ute B
Division of X-ray Photon Science, Department of Physics and Astronomy, Uppsala University Box 516 751 20 Uppsala Sweden
Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden.
RSC Adv. 2025 May 20;15(21):16894-16900. doi: 10.1039/d5ra00479a. eCollection 2025 May 15.
PbS quantum dots (QDs) hold significant potential for next-generation photovoltaic and photodetector applications due to their size-dependent electronic properties and strong absorption in the near-infrared region. In this study, we investigate charge transfer dynamics in PbS quantum dots of varying sizes, bulk PbS, and PbI reference samples using Resonant Auger- (RAS) and Core-Hole Clock Spectroscopy (CHCS). Mapping the Pb M-edge, we capture attosecond-scale electron transfer, using the Pb 3d core-hole lifetime as an internal clock. Our results reveal that PbS bulk samples and larger quantum dots exhibit faster charge transfer rates compared with smaller quantum dots and PbI, which display slower rates. Additionally, by comparing charge transfer times in the Pb MNN and S KLL Auger regions, we demonstrate consistent behavior across different resonant excitation edges, reinforcing our understanding of how quantum dot size and ligand environment influence charge transport. These insights highlight the importance of optimizing QD size and surface chemistry to improve charge transfer efficiency, a critical factor for high-performance energy materials.
硫化铅量子点(QDs)因其尺寸依赖的电子特性以及在近红外区域的强吸收特性,在下一代光伏和光电探测器应用中具有巨大潜力。在本研究中,我们使用共振俄歇(RAS)和芯孔时钟光谱(CHCS)研究了不同尺寸的硫化铅量子点、块状硫化铅和碘化铅参考样品中的电荷转移动力学。通过绘制铅M边,我们利用铅3d芯孔寿命作为内部时钟,捕捉到了阿秒级的电子转移。我们的结果表明,与显示较慢速率的较小量子点和碘化铅相比,块状硫化铅样品和较大的量子点表现出更快的电荷转移速率。此外,通过比较铅MNN和硫KLL俄歇区域中的电荷转移时间,我们证明了在不同共振激发边缘的一致行为,加深了我们对量子点尺寸和配体环境如何影响电荷传输的理解。这些见解突出了优化量子点尺寸和表面化学以提高电荷转移效率的重要性,这是高性能能量材料的关键因素。