Suppr超能文献

通过化学结合优化用于高效稳定太阳能电池的硫化铅胶体量子点的表面化学性质。

Optimizing Surface Chemistry of PbS Colloidal Quantum Dot for Highly Efficient and Stable Solar Cells via Chemical Binding.

作者信息

Hu Long, Lei Qi, Guan Xinwei, Patterson Robert, Yuan Jianyu, Lin Chun-Ho, Kim Jiyun, Geng Xun, Younis Adnan, Wu Xianxin, Liu Xinfeng, Wan Tao, Chu Dewei, Wu Tom, Huang Shujuan

机构信息

School of Materials Science and Engineering University of New South Wales (UNSW) Sydney NSW 2052 Australia.

School of Engineering Macquarie University Sustainable Energy Research Centre Macquarie University Sydney NSW 2109 Australia.

出版信息

Adv Sci (Weinh). 2020 Nov 27;8(2):2003138. doi: 10.1002/advs.202003138. eCollection 2021 Jan.

Abstract

The surface chemistry of colloidal quantum dots (CQD) play a crucial role in fabricating highly efficient and stable solar cells. However, as-synthesized PbS CQDs are significantly off-stoichiometric and contain inhomogeneously distributed S and Pb atoms at the surface, which results in undercharged Pb atoms, dangling bonds of S atoms and uncapped sites, thus causing surface trap states. Moreover, conventional ligand exchange processes cannot efficiently eliminate these undesired atom configurations and defect sites. Here, potassium triiodide (KI) additives are combined with conventional PbX matrix ligands to simultaneously eliminate the undercharged Pb species and dangling S sites via reacting with molecular I generated from the reversible reaction KI ⇌ I + KI. Meanwhile, high surface coverage shells on PbS CQDs are built via PbX and KI ligands. The implementation of KI additives remarkably suppresses the surface trap states and enhances the device stability due to the surface chemistry optimization. The resultant solar cells achieve the best power convention efficiency of 12.1% and retain 94% of its initial efficiency under 20 h continuous operation in air, while the control devices with KI additive deliver an efficiency of 11.0% and retains 87% of their initial efficiency under the same conditions.

摘要

胶体量子点(CQD)的表面化学在制造高效稳定的太阳能电池中起着至关重要的作用。然而,刚合成的硫化铅CQD严重偏离化学计量比,表面硫原子和铅原子分布不均匀,导致铅原子电荷不足、硫原子悬键和未封端位点,从而产生表面陷阱态。此外,传统的配体交换过程无法有效消除这些不理想的原子构型和缺陷位点。在此,碘化钾(KI)添加剂与传统的PbX基质配体相结合,通过与可逆反应KI⇌I + KI产生的分子碘反应,同时消除电荷不足的铅物种和硫悬键。与此同时,通过PbX和KI配体在硫化铅CQD上构建高表面覆盖率的壳层。由于表面化学优化,KI添加剂的加入显著抑制了表面陷阱态并提高了器件稳定性。所得太阳能电池实现了12.1%的最佳功率转换效率,在空气中连续运行20小时后仍保留其初始效率的94%,而不含KI添加剂的对照器件在相同条件下的效率为11.0%,并保留其初始效率的87%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7015/7816699/919a3beee558/ADVS-8-2003138-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验