Suppr超能文献

二维、一维和零维纳米结构中的光学量子限制和光催化特性。

Optical quantum confinement and photocatalytic properties in two-, one- and zero-dimensional nanostructures.

作者信息

Edvinsson T

机构信息

Department of Engineering Sciences, Solid State Physics, Uppsala University, Box 534, SE 751 21 Uppsala, Sweden.

出版信息

R Soc Open Sci. 2018 Sep 12;5(9):180387. doi: 10.1098/rsos.180387. eCollection 2018 Sep.

Abstract

Low-dimensional nanomaterials have been explored extensively in the last decades, partly fuelled by the new possibilities for tuning and controlling their electronic properties. In a broader perspective within catalysis, two-, one- and zero-dimensional (2D, 1D and 0D) inorganic nanomaterials represent a bridge between the selectivity of molecular catalysts and the high performance and stability of inorganic catalysts. As a consequence of the low dimensions, higher surface areas are obtained but also introduce new physics and increased tuneability of the electronic states in the nanostructured system. Herein, we derive the commonly used equations for optical transitions and carrier confinement in semiconductors and discuss their effect on the optical and photocatalytic properties of direct band and indirect band gap materials. In particular, the physical properties of the optical and photocatalytic properties of FeO and ZnO will be used to exemplify the effects of the low dimensionality. Carrier confinement effects with changes in the density of states, band gap/shift of band edges will be outlined together with their effects on the tuneability of the material and their wider application as photocatalytic materials.

摘要

在过去几十年中,低维纳米材料得到了广泛研究,部分原因是调控和控制其电子特性的新可能性推动了这一研究。从催化领域更广泛的角度来看,二维、一维和零维(2D、1D和0D)无机纳米材料是分子催化剂的选择性与无机催化剂的高性能和稳定性之间的桥梁。由于尺寸较小,纳米结构体系获得了更高的表面积,但同时也引入了新的物理现象,并增加了电子态的可调控性。在此,我们推导了半导体中光学跃迁和载流子限制的常用方程,并讨论了它们对直接带隙和间接带隙材料的光学和光催化性能的影响。特别是,将以FeO和ZnO的光学和光催化性能的物理特性为例,说明低维特性的影响。将概述态密度变化、带隙/带边移动引起的载流子限制效应,以及它们对材料可调控性的影响及其作为光催化材料的更广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ec/6170533/e2daf6c4b7a2/rsos180387-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验