Abraham Tanishq Mathew, Casteleiro Costa Paloma, Filan Caroline, Guang Zhe, Zhang Zhaobin, Neill Stewart, Olson Jeffrey J, Levenson Richard, Robles Francisco E
Department of Biomedical Engineering, University of California, Davis, California 95616, USA.
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Optica. 2023 Dec 20;10(12):1605-1618. doi: 10.1364/optica.502859. Epub 2023 Dec 1.
Histological staining of tissue biopsies, especially hematoxylin and eosin (H&E) staining, serves as the benchmark for disease diagnosis and comprehensive clinical assessment of tissue. However, the typical formalin-fixation, paraffin-embedding (FFPE) process is laborious and time consuming, often limiting its usage in time-sensitive applications such as surgical margin assessment. To address these challenges, we combine an emerging 3D quantitative phase imaging technology, termed quantitative oblique back illumination microscopy (qOBM), with an unsupervised generative adversarial network pipeline to map qOBM phase images of unaltered thick tissues (i.e., label- and slide-free) to virtually stained H&E-like (vH&E) images. We demonstrate that the approach achieves high-fidelity conversions to H&E with subcellular detail using fresh tissue specimens from mouse liver, rat gliosarcoma, and human gliomas. We also show that the framework directly enables additional capabilities such as H&E-like contrast for volumetric imaging. The quality and fidelity of the vH&E images are validated using both a neural network classifier trained on real H&E images and tested on virtual H&E images, and a user study with neuropathologists. Given its simple and low-cost embodiment and ability to provide real-time feedback , this deep-learning-enabled qOBM approach could enable new workflows for histopathology with the potential to significantly save time, labor, and costs in cancer screening, detection, treatment guidance, and more.
组织活检的组织学染色,尤其是苏木精和伊红(H&E)染色,是疾病诊断和组织综合临床评估的基准。然而,典型的福尔马林固定、石蜡包埋(FFPE)过程既费力又耗时,常常限制了其在诸如手术切缘评估等对时间敏感的应用中的使用。为应对这些挑战,我们将一种新兴的3D定量相成像技术——定量斜背照明显微镜(qOBM),与一个无监督生成对抗网络流程相结合,以将未改变的厚组织(即无标记和载玻片)的qOBM相图像映射为类似H&E染色的虚拟图像(vH&E)。我们证明,使用来自小鼠肝脏、大鼠胶质肉瘤和人类神经胶质瘤的新鲜组织标本,该方法能够实现具有亚细胞细节的高保真H&E转换。我们还表明,该框架直接实现了其他功能,如用于体积成像的类似H&E的对比度。使用在真实H&E图像上训练并在虚拟H&E图像上测试的神经网络分类器,以及与神经病理学家进行的用户研究,验证了vH&E图像的质量和保真度。鉴于其简单且低成本的实施方案以及提供实时反馈的能力,这种基于深度学习的qOBM方法可以为组织病理学开启新的工作流程,有可能在癌症筛查、检测、治疗指导等方面显著节省时间、人力和成本。