Hastings Erica M, Skora Tomasz, Carney Keith R, Fu Henry C, Bidone Tamara C, Sigala Paul A
Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States.
These authors contributed equally to this work.
bioRxiv. 2025 Apr 27:2025.04.25.650681. doi: 10.1101/2025.04.25.650681.
Malaria parasites infect red blood cells where they digest host hemoglobin and release free heme inside a lysosome-like organelle called the food vacuole. To detoxify excess heme, parasites form hemozoin crystals that rapidly tumble inside this compartment. Hemozoin formation is critical for parasite survival and antimalarial drug activity, but crystal motion and its underlying mechanism are unexplored. We used quantitative image analysis to determine the timescale of motion, which requires the intact vacuole but does not require the parasite itself. Using single-particle tracking and Brownian dynamics simulations with experimentally derived interaction potentials, we found that hemozoin motion exhibits unexpectedly tight confinement but is much faster than thermal diffusion. Hydrogen peroxide, which is generated at high concentrations in the food vacuole, has been shown to stimulate metallic nanoparticle motion via surface-catalyzed peroxide decomposition that generates propulsive kinetic energy. We observed that peroxide stimulated the motion of isolated crystals in solution and that conditions that suppress peroxide formation slowed hemozoin motion inside parasites. These data suggest that surface-exposed metals on hemozoin catalyze peroxide decomposition to drive crystal motion and strengthen oxidative stress protection during blood-stage infection. This work reveals hemozoin motion in malaria parasites as a biological example of a self-propelled nanoparticle.
疟原虫感染红细胞后,会在红细胞内消化宿主血红蛋白,并在一种类似溶酶体的细胞器——食物泡内释放游离血红素。为了将过量的血红素解毒,疟原虫会形成疟色素晶体,这些晶体在这个隔室内快速翻滚。疟色素的形成对于疟原虫的存活和抗疟药物活性至关重要,但晶体的运动及其潜在机制尚未得到探索。我们使用定量图像分析来确定运动的时间尺度,这需要完整的食物泡,但不需要疟原虫本身。通过单粒子追踪以及使用实验得出的相互作用势进行布朗动力学模拟,我们发现疟色素的运动表现出出乎意料的紧密限制,但比热扩散快得多。已证明在食物泡中高浓度产生的过氧化氢可通过表面催化的过氧化物分解来刺激金属纳米颗粒运动,这种分解会产生推进动能。我们观察到过氧化氢刺激了溶液中分离出的晶体的运动,并且抑制过氧化物形成的条件会减缓疟原虫内疟色素的运动。这些数据表明,疟色素表面暴露的金属催化过氧化物分解以驱动晶体运动,并在血液阶段感染期间加强氧化应激保护。这项工作揭示了疟原虫中疟色素的运动是自推进纳米颗粒的一个生物学实例。