Suppr超能文献

更好的统计报告并不能带来统计严谨性:神经疾病小鼠模型研究中二十年伪重复的教训。

Better statistical reporting does not lead to statistical rigour: lessons from two decades of pseudoreplication in mouse-model studies of neurological disorders.

作者信息

Eleftheriou Constantinos, Giachetti Sarah, Hickson Raven, Kamnioti-Dumont Laura, Templaar Robert, Aaltonen Alina, Tsoukala Eleni, Kim Nawon, Fryer-Petridis Lysandra, Henley Chloe, Erdem Ceren, Wilson Emma, Maio Beatriz, Ye Jingjing, Pierce Jessica C, Mazur Kath, Landa-Navarro Lucia, Petrović Nina G, Bendova Sarah, Woods Hanan, Rizzi Manuela, Salazar-Sanchez Vanesa, Anstey Natasha, Asiminas Antonios, Basu Shinjini, Booker Sam A, Harris Anjanette, Heyes Sam, Jackson Adam, Crocker-Buque Alex, McMahon Aoife C, Till Sally M, Wijetunge Lasani S, Wyllie David Ja, Abbott Catherine M, O'Leary Timothy, Kind Peter C

机构信息

Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK.

Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.

出版信息

Mol Autism. 2025 May 26;16(1):30. doi: 10.1186/s13229-025-00663-3.

Abstract

BACKGROUND

Accurately determining the sample size ("N") of a dataset is a key consideration for experimental design. Misidentification of sample size can lead to pseudoreplication, a process of artificially inflating the number of experimental replicates which systematically underestimates variability, overestimates effect sizes and invalidates statistical tests performed on the data. While many journals have adopted stringent requirements with regard to statistical reporting over the last decade, it remains unknown whether such efforts have had a meaningful impact on statistical rigour.

METHODS

Here, we evaluated the prevalence of this type of statistical error among neuroscience studies involving animal models of Fragile-X Syndrome (FXS) and those using animal models of neurological disorders at large published between 2001 and 2024.

RESULTS

We found that pseudoreplication was present in the majority of publication, increasing over time despite marked improvements in statistical reporting over the last decade. This trend generalised beyond the FXS literature to rodent studies of neurological disorders at large between 2012 and 2024, suggesting that pseudoreplication remains a widespread issue in the literature.

LIMITATIONS

The scope of this study was limited to rodent-model studies of neurological disorders which had the potential for being pseudoreplicated, by allowing repeat observations from individual animals. We did not consider reviews or articles whose experimental design could not allow for pseudoreplication, for example studies which reported only behavioural results, or studies which did not use inferential statistics.

CONCLUSIONS

These observations identify an urgent need for better standards in experimental design and increased vigilance for this type of error during peer review. While reporting standards have significantly improved over the past two decades, this alone has not been enough to curb the prevalence of pseudoreplication. We offer suggestions for how this can be remedied as well as quantifying the severity of this particular type of statistical error. Although the examined literature concerns a specific neuroscience-related area of research, the implications of pseudoreplication apply to all fields of empirical research.

摘要

背景

准确确定数据集的样本量(“N”)是实验设计的关键考量因素。样本量的错误识别可能导致伪重复,即人为增加实验重复次数的过程,这会系统性地低估变异性、高估效应大小,并使对数据进行的统计检验无效。尽管在过去十年中,许多期刊对统计报告采用了严格要求,但这些努力是否对统计严谨性产生了有意义的影响仍不明确。

方法

在此,我们评估了2001年至2024年间发表的涉及脆性X综合征(FXS)动物模型的神经科学研究以及那些广泛使用神经疾病动物模型的研究中此类统计错误的发生率。

结果

我们发现大多数出版物中都存在伪重复现象,尽管过去十年统计报告有显著改进,但伪重复现象仍随时间增加。这一趋势不仅在FXS文献中存在,在2012年至2024年间对神经疾病的啮齿动物研究中也普遍存在,表明伪重复在文献中仍然是一个普遍问题。

局限性

本研究的范围仅限于对神经疾病的啮齿动物模型研究,这些研究因允许对单个动物进行重复观察而有可能出现伪重复。我们没有考虑那些实验设计不允许伪重复的综述或文章,例如仅报告行为结果的研究,或未使用推断统计的研究。

结论

这些观察结果表明迫切需要在实验设计方面制定更好的标准,并在同行评审期间提高对此类错误的警惕性。虽然报告标准在过去二十年中有了显著改进,但仅此一点还不足以遏制伪重复的流行。我们提供了如何纠正这一问题的建议,以及量化这种特定类型统计错误的严重程度。尽管所研究的文献涉及神经科学相关的特定研究领域,但伪重复的影响适用于所有实证研究领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验